Notification about the transfer of the semiconductor business

The semiconductor business of Panasonic Corporation will be transferred on September 1, 2020 to Nuvoton Technology Corporation (hereinafter referred to as "Nuvoton"). Accordingly, Panasonic Semiconductor Solutions Co., Ltd. will come under the umbrella of the Nuvoton Group, with the new name of Nuvoton Technology Corporation Japan (hereinafter referred to as "NTCJ").

In accordance with this transfer, semiconductor products will be handled as NTCJ-made products after September 1, 2020. However, such products will be continuously sold through Panasonic Corporation.

Publisher of this Document is NTCJ.
If you would find description “Panasonic” or “Panasonic semiconductor solutions”, please replace it with NTCJ.
※ Except below description page
“Request for your special attention and precautions in using the technical information and semiconductors described in this book”

Nuvoton Technology Corporation Japan
3D sensing technology for smart space

Panasonic Semiconductor Solutions Co., Ltd.

The product is under development. Product specifications described in this document are subject to change without notice for modification and/or improvement.
3D Sensing Technologies

NIR Light Source

Area Sensor

Object

Ranging Area

*NIR: Near Infra-Red

NIR Light Source

Illuminated Light

Reflected Light

Solid State Active Ranging Technology

Ranging

Light

Active

Passive

Stereo/Multi Vision

Scan-Lidar

Confocal

Sonar

Waves

Mechanical

Time Counting

Solid State LiDAR

Signals Ratio

Direct TOF

Indirect TOF

Triangulation

Time-Of-Flight

Structured Light

Light-cutting

*NIR: Near Infra-Red
Feature comparison of ranging methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Structured Light</th>
<th>Indirect TOF</th>
<th>Direct TOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept</td>
<td>Triangulation</td>
<td>Light round-trip (Signals ratio)</td>
<td>Light round-trip (Time counting)</td>
</tr>
<tr>
<td>Operational principle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE light source</td>
<td></td>
<td></td>
<td>Light source</td>
</tr>
<tr>
<td>CMOS sensor</td>
<td>Light source</td>
<td>SPAD sensor</td>
<td>SPAD sensor</td>
</tr>
<tr>
<td>Light source</td>
<td>TOF sensor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor</td>
<td>Light source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lens</td>
<td>Light source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target sensor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pixel position of target sensor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n pixel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P pixel size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focal length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth</td>
<td>Ranging pixel~20um</td>
<td>Ranging pixel~10um</td>
<td>Ranging pixel ~100um</td>
</tr>
<tr>
<td>Density (points)</td>
<td>~ tens of thousands</td>
<td>~ hundreds of thousands</td>
<td>~ several thousands</td>
</tr>
<tr>
<td>Light resistance</td>
<td>~ tens of thousands lx</td>
<td>~ hundreds of thousands lx</td>
<td>~ hundreds of thousands lx</td>
</tr>
</tbody>
</table>

*1 DOE : Diffractive Optical Element
*2 SPAD : Single Photon Avalanche Diode
*3 TDC : Time to Digital Converter

\[
Z = \frac{F \times D}{p \times n}
\]

\[
Z = \frac{C_0 \cdot T_P}{2} \cdot \left(\frac{A_1}{A_0 + A_1} \right)
\]

\[
Z = \frac{C_0}{2} (t_1 - t_0)
\]

Ranging pixel ~100um
Our Target applications

Information density, Light resistance + Depth accuracy

- Biometrics
- Skeleton detection
- State detection
- Action estimation
- Spatial recognition
- Obstacle detection

Indirect TOF (PSCS method)

Structured Light

Distance Z [m]

Direct TOF

Accuray (σ)

0.1 1 10 100
Introduction of Imaging LiDAR
(Under Development)
Sensing ambient space information for autonomous control in smart mobility

Concept of Imaging LiDAR

- **Sensing**
- **Detection data**
- **Meta data creation**

Getting 2D, 3D image
without parallax and time lag

- **3D data (Depth)**
- **2D data (BW, IR)**

Mecha-less structure
Flash emission synchronized with sensing device

Performance complemented by AI
Interpolation technology of missing depth info by learning BW / IR / Depth data

Detailed understanding of objects
Object recognition using high density data
- Object: Pole / chain, curb, white line, electric pole etc.

Panasonic Semiconductor Solutions Co., Ltd
Application example 1: **AGV** Carton size measurement/Autonomous driving/Storage

Carton size measurement

Passage

Recognize storage location

Box width: 29.3cm, Thick = 25.0cm, Height = 26.4cm
Application example 1: AGV Carton size measurement/Autonomous driving/Storage

Carton size measurement

Passage

Recognize storage location
Application example 1: AGV Carton size measurement/Autonomous driving/Storage

Carton size measurement

Passage

Recognize storage location
Application example 2: Drone Detecting people and locations at night (<1lx)

Depth image/
Human detection
※Photography in dark indoors

Top View
Counting the number of people

✓ Installation Conditions:
 Height 2.7m
 Angle of depression 20°
✓ Measurement environment:
 Dark Indoors 0.2Lx
Provide ease-of-use and value by metadata

User

Industrial/FA Customers

- Big Data
- Visualization
- Human friendly

Value Creation

Device Supply

Provider

Sensing

- Depth sensor

Living/Logistics/mobility customers

- Big Data
- Providing Meta data
 - State/Behavior/Emotion

Intelligent sensing

- Depth sensor
- General SoC+AI
- Specialized knowhow

Know-how

- Providing RAW Data
 - RGB/NIR/Depth

User

Device Supply

Provider

Value Creation

Indusrtial/FA Customers

- Big Data
- Visualization
- Human friendly

Living/Logistics/mobility customers

- Big Data
- Providing Meta data
 - State/Behavior/Emotion

Intelligent sensing

- Depth sensor
- General SoC+AI
- Specialized knowhow
Thank you

Panasonic
Request for your special attention and precautions in using the technical information and semiconductors described in this book

(1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.

(2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation, Nuvoton Technology Corporation Japan or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.

(3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book. Please consult with our sales staff in advance for information on the following applications, moreover please exchange documents separately on terms of use etc.: Special applications (such as for in-vehicle equipment, airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, medical equipment and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body. Unless exchanging documents on terms of use etc. in advance, it is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application.

(4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.

(5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.

(6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. We do not guarantee quality for disassembled products or the product re-mounted after removing from the mounting board. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.

(7) When reselling products described in this book to other companies without our permission and receiving any claim of request from the resale destination, please understand that customers will bear the burden.

(8) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.