Notification about the transfer of the semiconductor business

The semiconductor business of Panasonic Corporation will be transferred on September 1, 2020 to Nuvoton Technology Corporation (hereinafter referred to as "Nuvoton"). Accordingly, Panasonic Semiconductor Solutions Co., Ltd. will come under the umbrella of the Nuvoton Group, with the new name of Nuvoton Technology Corporation Japan (hereinafter referred to as "NTCJ").

In accordance with this transfer, semiconductor products will be handled as NTCJ-made products after September 1, 2020. However, such products will be continuously sold through Panasonic Corporation.

Publisher of this Document is NTCJ.
If you would find description “Panasonic” or “Panasonic semiconductor solutions”, please replace it with NTCJ.
※ Except below description page
 “Request for your special attention and precautions in using the technical information and semiconductors described in this book”

Nuvoton Technology Corporation Japan
FCAB22420L
Gate resistor installed Dual N-channel MOS FET
For lithium-ion secondary battery protection circuits

- Features
 - Source-source On-state Resistance: RSS(on) typ. = 2.6 mΩ (VGS = 3.8 V)
 - CSP (Chip Size Package)
 - Halogen-free / RoHS compliant (EU RoHS / UL-94 V-0 / MSL: Level 1)

- Marking Symbol: 97

- Packaging
 Embossed type (Thermo-compression sealing): 8 000 pcs/reel (standard)

<table>
<thead>
<tr>
<th>Absolute Maximum Ratings Ta = 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Source-source Voltage</td>
</tr>
<tr>
<td>Gate-source Voltage</td>
</tr>
<tr>
<td>Source Current DC</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pulsed(^4)</td>
</tr>
<tr>
<td>Total Power Dissipation DC</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Channel Temperature</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermal Characteristics Ta = 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Thermal Resistance (ch-a)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Note
- **1** Mounted on FR4 board (25.4 mm × 25.4 mm × 1.0 mm).
- FR4 board partially covered with copper pad (42 mm² area, 36 µm thickness).
- **2** Mounted on FR4 board (25.4 mm × 25.4 mm × 1.0 mm).
- FR4 board fully covered with copper pad (605 mm² area, 36 µm thickness).
- **3** Mounted on Ceramic board (70 mm × 70 mm × 1.0 mm).
- **4** t = 10 µs, Duty Cycle ≤ 1 %
ADVANCE INFORMATION

Product Standards

MOS FET

FCAB22420L

Electrical Characteristics Ta = 25 °C ± 3 °C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source-source Breakdown Voltage</td>
<td>VSSS</td>
<td>IS = 1 mA, VGS = 0 V</td>
<td>23</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Zero Gate Voltage Source Current</td>
<td>ISSS</td>
<td>VSS = 23 V, VGS = 0 V</td>
<td></td>
<td>1.0</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Gate-source Leakage Current</td>
<td>IGSS1</td>
<td>VGS = ±8 V, VSS = 0 V</td>
<td></td>
<td>±10</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>IGSS2</td>
<td>VGS = ±5 V, VSS = 0 V</td>
<td></td>
<td>±1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-source Threshold Voltage</td>
<td>Vth</td>
<td>IS = 1.31 mA, VSS = 10 V</td>
<td>0.35</td>
<td>0.9</td>
<td>1.4</td>
<td>V</td>
</tr>
<tr>
<td>Source-source On-state Resistance</td>
<td>RSS(on)1</td>
<td>IS = 6.5 A, VGS = 4.5 V</td>
<td>1.75</td>
<td>2.4</td>
<td>3.15</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td>RSS(on)2</td>
<td>IS = 6.5 A, VGS = 3.8 V</td>
<td>1.9</td>
<td>2.6</td>
<td>3.4</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td>RSS(on)3</td>
<td>IS = 6.5 A, VGS = 3.1 V</td>
<td>2.05</td>
<td>3.0</td>
<td>4.95</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td>RSS(on)4</td>
<td>IS = 6.5 A, VGS = 2.5 V</td>
<td>2.25</td>
<td>3.8</td>
<td>7.5</td>
<td>mΩ</td>
</tr>
<tr>
<td>Body Diode Forward Voltage</td>
<td>VF(s-s)</td>
<td>IF = 6.5 A, VGS = 0 V</td>
<td>0.7</td>
<td></td>
<td>1.0</td>
<td>V</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>Ciss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>Coss</td>
<td>VSS = 10 V, VGS = 0 V, f = 1 kHz</td>
<td></td>
<td>490</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Reverse Transfer Capacitance</td>
<td>Crss</td>
<td></td>
<td></td>
<td>450</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Turn-on Delay Time</td>
<td>td(on)</td>
<td>VDD = 10 V, VGS = 0 to 4 V</td>
<td>1.4</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>Rise Time</td>
<td>tr</td>
<td>IS = 6.5 A</td>
<td>3.1</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>Turn-off Delay Time</td>
<td>td(off)</td>
<td>VDD = 10 V, VGS = 4 to 0 V</td>
<td>7.2</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>Fall Time</td>
<td>tf</td>
<td>IS = 6.5 A</td>
<td>4.8</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>Total Gate Charge</td>
<td>Qg</td>
<td>VDD = 10 V</td>
<td>39</td>
<td></td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>Gate-source Charge</td>
<td>Qgs</td>
<td>VGS = 0 to 4 V</td>
<td>19</td>
<td></td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>Gate-drain Charge</td>
<td>Qgd</td>
<td>IS = 13 A</td>
<td>14</td>
<td></td>
<td></td>
<td>nC</td>
</tr>
</tbody>
</table>

Note

- Measuring methods are based on JAPANESE INDUSTRIAL STANDARD JIS C 7030 Measuring methods for transistors.
- *1 Guaranteed by design, not subject to production testing.
- *2 Measurement circuit for Turn-on Delay Time / Rise Time / Turn-off Delay Time / Fall Time.
Technical Data (reference)

IS - VSS †

- $V_{GS} = 4.5 \text{ V}$
- $V_{GS} = 3.8 \text{ V}$
- $V_{GS} = 3.1 \text{ V}$
- $V_{GS} = 2.5 \text{ V}$

$T_a = 25 \, ^\circ \text{C}$

RSS(on) - IS †

- $V_{GS} = 4.5 \text{ V}$
- $V_{GS} = 3.8 \text{ V}$
- $V_{GS} = 3.1 \text{ V}$
- $V_{GS} = 2.5 \text{ V}$

$T_a = 25 \, ^\circ \text{C}$

IS - V GS †

- $T_a = 85 \, ^\circ \text{C}$
- $25 \, ^\circ \text{C}$
- $-40 \, ^\circ \text{C}$

$V_{SS} = 10 \text{ V}$

IF - VF(s-s) †

- $V_{GS} = 0 \text{ V}$

- $T_a = 85 \, ^\circ \text{C}$
- $25 \, ^\circ \text{C}$
- $-40 \, ^\circ \text{C}$

$V_{GS} = 0 \text{ V}$

IGS - V GS †

- $T_a = 85 \, ^\circ \text{C}$
- $25 \, ^\circ \text{C}$
- $-40 \, ^\circ \text{C}$

$V_{GS} = 0 \text{ V}$

Source Current, IS (A)

Source-current Voltage, VSS (V)

Source Current, IS (A)

Gate-source Voltage, VGS (V)

Diode Forward Current, IF (A)

Body Diode Forward Voltage, VF(s-s) (V)

Gate-source Leakage Current, IGS (A)

Gate-source Voltage, VGS (V)

Source-source On-state Resistance, RSS(on) (mΩ)

Gate-source On-state Resistance, RSS(on) (mΩ)
Technical Data (reference)

Gate-source Voltage, VGS (V)

Zero Gate Voltage Source Current

ISS (A)

Rth - tsw

Safe Operating Area

Thermal Resistance, Rth (°C/W)

Source Current, IS (A)

Dynamic Input/Output Characteristics

Source-source Voltage, VSS (V)

Total Gate Charge, Qg (nC)

Normalized Effective Transient Thermal Impedance

Square Wave Pulse Duration, t1 (s)

Duty Cycle = t1 / t2

Limited by RSS(on) (VGS = 3.8 V)

Absolute Maximum Rating

VDD = 10 V

IS = 13 A

Ta = 25 °C

Ta = 25 °C

Ta = 25 °C

Note

*1 Pulse measurement.

*2 Mounted on FR4 board (25.4 mm × 25.4 mm × t1.0 mm).

FR4 board partially covered with copper pad
(42 mm² area, 36 μm thickness).

*3 Mounted on FR4 board (25.4 mm × 25.4 mm × t1.0 mm).

FR4 board fully covered with copper pad
(605 mm² area, 36 μm thickness).

*4 Mounted on Ceramic board (70 mm × 70 mm × t1.0 mm).
ADVANCE INFORMATION

Product Standards

MOS FET

FCAB22420L

Outline

(Top View)

(Front View)

(Bottom View)

Land Pattern (reference)

Unit: mm

Stencil Pattern (reference)

Unit: mm
Request for your special attention and precautions in using the technical information and semiconductors described in this book

(1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.

(2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation, Nuvoton Technology Corporation Japan or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.

(3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book.

(4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.

(5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.

(6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. We do not guarantee quality for disassembled products or the product re-mounted after removing from the mounting board. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.

(7) When reselling products described in this book to other companies without our permission and receiving any claim of request from the resale destination, please understand that customers will bear the burden.

(8) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.