PGA26E07BA-DB001

SMD to Thru-Hole Conversion Kit featuring:
- PGA26E07BA 600V 56mΩ X-GaN Power Transistor
- AN34092B Single channel X-GaN Gate Driver IC
Contents

FEATURES .. 4
APPEARANCE ... 5
DESCRIPTION OF PGA26E07BA-DB001 ... 6
SCHEMATIC DIAGRAM .. 7
BILL OF MATERIALS .. 8
PCB LAYOUT (DAB004) .. 10
PCB LAYOUT (DAB005) .. 11
RECOMMENDED OPERATING CONDITIONS .. 12
MOUNTING PROCEDURES AND ILLUSTRATIONS ... 13
DOUBLE PULSE SWITCHING TEST ... 15
IMPORTANT NOTICE ... 18
Features

X-GaN Transistor (PGA26E07BA)

- Blocking Voltage: 600V
- Pulse Peak I_{DS}: 61A
- I_{DS} (cont): 31A
- $RD(\text{on})$ typ: 56mΩ
- Normally-Off (Enhancement-mode device)

X-GaN Gate Driver (AN34092B)

- Support high switching frequency (~4MHz)
- Achieve safe operation by negative voltage source and active miller clamp
- Facilitate gate drive design with high precision gate current source

Figure 1: SMD to Thru-Hole Conversion Kit (PGA26E07BA-DB001)
● Appearance

The SMD to thru-hole conversion kit (PGA26E07BA-DB001) consist of 2 boards i.e. DAB004 (X-GaN power board) and DAB005 (driver circuit board). These two boards are connected to each other to form the overall conversion kit. These two individual board photos are shown on Figure 2 to 5.
Description of PGA26E07BA-DB001

PGA26E07BA-DB001 is an SMD to thru-hole conversion kit featuring Panasonic 600V 56mΩ X-GaN power transistor in an 8X8 SMD package (Q1) and AN34092B high-speed single channel X-GaN driver IC (IC1). As shown in Figure 6, this conversion kit consists of an X-GaN power board (DAB004) and driver circuit board (DAB005). It allows users to instantly replace an existing thru-hole package (e.g. TO220 and TO247) power transistor with Panasonic’s X-GaN device on their existing power supply application. The output (Drain, Source2) terminal pins are compatible with that of a thru-hole power package. This “plug-and-play” feature provides users with flexible, fast and easy X-GaN performance comparison with SJ-MOS without the need for a new board design. An application example is shown in Figure 12 (page 14) whereby the conversion kit is mounted on an actual power supply in place of a thru-hole package (TO247).

DAB004 is a single layer aluminum based X-GaN power board. Heat sink can be attached easily to the aluminum back surface via screw mounting for enhanced thermal dissipation. The Drain-Source2 pitch of this conversion kit is around 5mm, which is the usual drain-source pitch design for a thru-hole power transistor package. Source2 depicted in Figure 6 is the power loop source terminal which passes high current during power supply operation. DAB004 power board is attached closely to DAB005 driver circuit board so as to minimize gate drive loop parasitic inductance.

DAB005 employs Panasonic AN34092B GaN driver IC for the driving circuit. AN34092B high-speed characteristic (~4MHz) enables fast switching for Panasonic X-GaN power transistor. Low switching loss can be achieved with a fast dv/dt slew rate solution, which differentiates a wide bandgap GaN device with a conventional MOSFET device. In terms of flexibility, users can also easily optimize the dv/dt slew rate design with just a single resistor (R1) change. Source1 in Figure 6 is the source sensing terminal which is connected directly to the ground (GND) of IC1 for prevention of circuit oscillation. For more details about AN34092B driver IC, kindly refer to its product datasheet.

![Figure 6: PGA26E07BA-DB001 Block diagram](image-url)
Refer to Figure 7 below for the circuit schematic of the conversion kit. Panasonic X-GaN power transistor (PGA26E07BA) is denoted by Q1. X-GaN driver IC (AN34092B) is denoted by IC1.

Figure 7: PGA26E07BA-DB001 schematic
Bill of Materials

Table 1: Bill of Materials (DAB004)

<table>
<thead>
<tr>
<th>Parts</th>
<th>Symbol</th>
<th>Specification</th>
<th>Part Number</th>
<th>Manufacturer</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transistor</td>
<td>Q1</td>
<td>600V/56mΩ</td>
<td>PGA26E07BA</td>
<td>Panasonic</td>
<td>DFN 8X8</td>
</tr>
<tr>
<td>Pin</td>
<td>CN1</td>
<td>2.54mm pitch/ 3 pin</td>
<td>HQ-3-15</td>
<td>Mac8</td>
<td>SMD type</td>
</tr>
<tr>
<td>Pin</td>
<td>CN2</td>
<td>2.54mm pitch/ 3 pin</td>
<td>HQ-3-15</td>
<td>Mac8</td>
<td>SMD type</td>
</tr>
</tbody>
</table>

Table 2 (a): Bill of Materials (DAB005) for non-inverting input signal [DEFAULT]

<table>
<thead>
<tr>
<th>Parts</th>
<th>Symbol</th>
<th>Specification</th>
<th>Part Number</th>
<th>Manufacturer</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver IC</td>
<td>IC1</td>
<td>—</td>
<td>AN34092B</td>
<td>Panasonic</td>
<td>QFN 4X4</td>
</tr>
<tr>
<td>Chip Resistor</td>
<td>R1</td>
<td>100Ω</td>
<td>ERJ6ENF1000V</td>
<td>Panasonic</td>
<td>SMD2012</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>0Ω</td>
<td>ERJ3GEY0R00V</td>
<td>Panasonic</td>
<td>SMD1608</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>1Ω</td>
<td>ERJ6GEYJ1R0V</td>
<td>Panasonic</td>
<td>SMD2012</td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td>-</td>
<td>N.M.</td>
<td>-</td>
<td>SMD1608</td>
</tr>
<tr>
<td></td>
<td>R5</td>
<td>39kΩ</td>
<td>ERJ3GEYJ393V</td>
<td>Panasonic</td>
<td>SMD1608</td>
</tr>
<tr>
<td></td>
<td>R6</td>
<td>0Ω</td>
<td>ERJ3GEY0R00V</td>
<td>Panasonic</td>
<td>SMD1608</td>
</tr>
<tr>
<td></td>
<td>R7</td>
<td>-</td>
<td>N.M.</td>
<td>-</td>
<td>SMD1608</td>
</tr>
<tr>
<td></td>
<td>R8</td>
<td>-</td>
<td>N.M.</td>
<td>-</td>
<td>SMD1608</td>
</tr>
<tr>
<td>* C6</td>
<td>10kΩ</td>
<td>ERJ3GEYJ103V</td>
<td>Panasonic</td>
<td>SMD1608</td>
<td></td>
</tr>
<tr>
<td>* C7</td>
<td>0Ω</td>
<td>ERJ3GEY0R00V</td>
<td>Panasonic</td>
<td>SMD1608</td>
<td></td>
</tr>
<tr>
<td>Chip Capacitor</td>
<td>C1</td>
<td>1.5nF/50V</td>
<td>GRM188R71H152KA01</td>
<td>Murata</td>
<td>SMD1608</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>0.22μF/25V</td>
<td>GRM155C81E224KE01</td>
<td>Murata</td>
<td>SMD1005</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>0.47μF/16V</td>
<td>GRM155C81C474KE01</td>
<td>Murata</td>
<td>SMD1005</td>
</tr>
<tr>
<td></td>
<td>C4</td>
<td>4.7μF/10V</td>
<td>GRM188C71A475KE11</td>
<td>Murata</td>
<td>SMD1608</td>
</tr>
<tr>
<td></td>
<td>C5</td>
<td>1μF/25V</td>
<td>GRM188R71E105KA12</td>
<td>Murata</td>
<td>SMD1608</td>
</tr>
<tr>
<td></td>
<td>C8</td>
<td>10μF/50V</td>
<td>GRM32ER71H106KA12</td>
<td>Murata</td>
<td>SMD3225</td>
</tr>
<tr>
<td></td>
<td>C9</td>
<td>0.1μF/100V</td>
<td>GRM188R72A104KA35</td>
<td>Murata</td>
<td>SMD1608</td>
</tr>
</tbody>
</table>

* Resistors are mounted on C6 and C7 instead of capacitors
Bill of Materials (continued)

Table 2 (b): Bill of Materials (DAB005) for inverting input signal use only

<table>
<thead>
<tr>
<th>Parts</th>
<th>Symbol</th>
<th>Specification</th>
<th>Part Number</th>
<th>Manufacturer</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver IC</td>
<td>IC1</td>
<td>-</td>
<td>AN34092B</td>
<td>Panasonic</td>
<td>QFN 4X4</td>
</tr>
<tr>
<td></td>
<td>R1</td>
<td>100Ω</td>
<td>ERJ6ENF1000V</td>
<td>Panasonic</td>
<td>SMD2012</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>0Ω</td>
<td>ERJ3GEY0R00V</td>
<td>Panasonic</td>
<td>SMD1608</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>1Ω</td>
<td>ERJ6GEYJ1R0V</td>
<td>Panasonic</td>
<td>SMD2012</td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td>-</td>
<td>N.M.</td>
<td>-</td>
<td>SMD1608</td>
</tr>
<tr>
<td></td>
<td>R5</td>
<td>39kΩ</td>
<td>ERJ3GEYJ393V</td>
<td>Panasonic</td>
<td>SMD1608</td>
</tr>
<tr>
<td></td>
<td>R6</td>
<td>0Ω</td>
<td>ERJ3GEY0R00V</td>
<td>Panasonic</td>
<td>SMD1608</td>
</tr>
<tr>
<td></td>
<td>R7</td>
<td>-</td>
<td>N.M.</td>
<td>-</td>
<td>SMD1608</td>
</tr>
<tr>
<td></td>
<td>R8</td>
<td>-</td>
<td>N.M.</td>
<td>-</td>
<td>SMD1608</td>
</tr>
<tr>
<td></td>
<td>* C6</td>
<td>10kΩ</td>
<td>ERJ3GEYJ103V</td>
<td>Panasonic</td>
<td>SMD1608</td>
</tr>
<tr>
<td></td>
<td>* C7</td>
<td>0Ω</td>
<td>ERJ3GEY9R00V</td>
<td>Panasonic</td>
<td>SMD1608</td>
</tr>
<tr>
<td>Chip Capacitor</td>
<td>C1</td>
<td>1.5nF/50V</td>
<td>GRM188R71H152KA01</td>
<td>Murata</td>
<td>SMD1608</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>0.22μF/25V</td>
<td>GRM155C81E224KE01</td>
<td>Murata</td>
<td>SMD1005</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>0.47μF/16V</td>
<td>GRM155C81C474KE01</td>
<td>Murata</td>
<td>SMD1005</td>
</tr>
<tr>
<td></td>
<td>C4</td>
<td>4.7μF/10V</td>
<td>GRM188C71A475KE11</td>
<td>Murata</td>
<td>SMD1608</td>
</tr>
<tr>
<td></td>
<td>C5</td>
<td>1μF/25V</td>
<td>GRM188R71E105KA12</td>
<td>Murata</td>
<td>SMD1608</td>
</tr>
<tr>
<td></td>
<td>C8</td>
<td>10μF/50V</td>
<td>GRM32ER71H106KA12</td>
<td>Murata</td>
<td>SMD3225</td>
</tr>
<tr>
<td></td>
<td>C9</td>
<td>0.1μF/100V</td>
<td>GRM188R72A104KA35</td>
<td>Murata</td>
<td>SMD1608</td>
</tr>
</tbody>
</table>

* Resistor is mounted on C7 (10kΩ) instead of capacitor
PCB Layout (DAB004)

PCB Specifications:
- Single-sided Aluminum board
- Size: 23mm × 28mm
- Copper thickness: 35um
- Board thickness: 1.6mm

Figure 8: DAB004 PCB Layout
PCB Layout (DAB005)

PCB Specifications:
- Double-sided FR-4 board
- Size: 12mm x 21.5mm
- Copper thickness: 70um
- Board thickness: 1.6mm

Figure 9: DAB005 top PCB Layout

Figure 10: DAB005 bottom PCB Layout
Recommended Operating Conditions

Table 3 shows the recommended operating conditions for Panasonic’s SMD to thru-hole conversion kit PGA26E07BA-DB001. All the components used in PGA26E07BA-DB001 are rated for these recommended operating conditions only.

It is necessary to refer to the respective X-GaN transistor and X-GaN driver IC datasheet when using this application manual.

Table 3: Recommended operating conditions for PGA26E07BA-DB001

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage (VPN) -- ①</td>
<td><600V</td>
</tr>
<tr>
<td>Driver IC power supply voltage (VCC) -- ②</td>
<td>12V</td>
</tr>
<tr>
<td>External clock voltage (IN) -- ③</td>
<td>5V</td>
</tr>
<tr>
<td>Temperature</td>
<td>25°C</td>
</tr>
</tbody>
</table>

①②③ These same operating parameters are illustrated in the test circuits on page 15.
Mounting Procedures and Illustrations

Connection of PGA26E07BA-DB001 on user’s board
1. Remove all the elements of drive circuit for existing SJ-MOS power transistor on user’s board such as gate driver, gate resistors, pull-down resistors, speed-up capacitors, diodes.
2. Connect DAB004 to user’s board for the 2 terminals as follows:
 (a) 「Drain terminal of DAB004」 and 「Drain power pattern on user’s board」
 (b) 「Source2 terminal of DAB004」 and 「Source power pattern on user’s board」
3. Connect DAB005 to user’s board for the 3 terminals as follows:
 (a) 「IN pad on DAB005」 and 「Controller output signal on user’s board」
 * In case of using the inverting signal, please remove R6 and C6, and then mount R7=0Ω, R8=0Ω and C7=10kΩ. This information can be found on page 9 [Table 2(b)].
 (b) 「VCC pad on DAB005」 and 「Auxiliary power supply on user’s board」
 (c) 「GND pad on DAB005」 and 「Signal GND on user’s board」
4. If heat sink is needed, screw it securely on the back side of DAB004.

Figure 11 (a): DAB004 image
Figure 11 (b): DAB005 image
Figure 11 (c): Fully mounted image
Mounting Procedures and Illustrations (continued)

Figure 12: For illustration purpose, PGA26E07BA-DB001 is conveniently mounted on an actual power supply

Note:

1. Use the conversion kit within the ratings described in the device product standards.
2. This conversion kit is not isolated.
3. Check your connection carefully.
Double Pulse Switching Test

Figure 13 shows the circuit schematic and the connections for the conversion kit (PGA26E07BA-DB001) on a simple chopper circuit configuration. The purpose of this test is to confirm the kit operation. The conversion kit is powered by a 12V VCC voltage. A pulse generator is used to generate a double pulse input. Drain-source voltage (V_{DS}) output slew rate is shown in Figure 15. Typical turn on/off waveforms (V_{GS}, V_{DS} and IL) are shown in Figure 16. Note that the dv/dt and waveform data presented is for reference use only and measured data maybe different depending on actual evaluation environment.

Condition:

VPN=400V, VCC=12V, R1=100Ω, R2=0Ω, R3=1Ω, C1=1.5nF

Figure 13: PGA26E07BA-DB001 in a simple chopper circuit

Table 4: Double pulse setting

<table>
<thead>
<tr>
<th>IL</th>
<th>#1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5A</td>
<td>3.4us</td>
</tr>
<tr>
<td>5A</td>
<td>6.8us</td>
</tr>
<tr>
<td>10A</td>
<td>14us</td>
</tr>
<tr>
<td>15A</td>
<td>20.5us</td>
</tr>
</tbody>
</table>

Figure 14: Double pulse profile
Double Pulse Switching Test (continued)

Figure 15(a): Drain-source voltage (V_{DS}) output turn-on slew rate

Figure 15(b): Drain-source voltage (V_{DS}) output turn-off slew rate
Double Pulse Switching Test (continued)

Figure 16(a): Typical turn-on waveform

Figure 16(b): Typical turn-off waveform
Important Notice

Please read and understand the following items, "Restriction", and "Caution" before using the conversion kit:

Restriction

- The conversion kit is intended for use as engineering development, verification or evaluation purposes only.
- This conversion kit is not intended for a finished end-product fit for general consumer use. The kit should not be used as all or part of a production unit.
- Do not operate in condition other than the recommended settings.
- The conversion kit must be used only by qualified engineers and technicians that have electronics training, familiar with handling of high-voltage electrical systems and observe good engineering practice standards.
- The conversion kit is meant to be operated in lab environment under the safe conditions.
- Please use a protective case (accessory) during evaluation.
- All of the specifications and evaluation data in this manual are for reference only and not guaranteed. The information may subject to change without notice. Please contact to Panasonic representative for the latest information.
- The user assumes all responsibility and liability for proper and safe handling of this conversion kit. Further, the user indemnifies Panasonic from all claims arising from the handling or use of the conversion kits.
- The technical information described in this document is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this document.

Caution

- The conversion kit carries hazardous high voltage. Do not touch when power is applied, otherwise, it may cause severe injury, disability or death.
- Electric charge may be accumulated in the capacitors. To prevent electrical shock, please ensure all the capacitors are properly discharged before touching the conversion kit.
- It is the user’s responsibility to confirm that the voltages, isolation requirements, and rated value are identified and understood, prior to handling the conversion kit.
- Do not leave the conversion kit unattended while power is applied and do not perform other activity near the conversion kit while power is applied.
- This board contains parts that are susceptible to damage by electrostatic discharge (ESD). It is the user’s responsibility to take any and all appropriate precautions with regard to electrostatic discharge when using the conversion kit.
- Should the conversion kit does not meet the specification indicated in the application note, the board may be exchanged with a new one within 30 days from the date of delivery. When exchanging the conversion kit, please return the board with all items included.
- The warranty on this conversion kit is considered void once a part on the board is removed or modified.
- The conversion kit does not fall within the scope of the technical requirements of the following directives or other related directives:
 - Restriction of Hazardous Substances (RoHS)
 - Directive on Waste Electrical and Electronic Equipment (WEEE)
 - Mandatory conformity marking for products sold in the European Economic Area (CE)
 - Federal Communications Commission (FCC)
 - Underwriters Laboratories, Inc. (UL)
Request for your special attention and precautions in using the technical information and semiconductors described in this book

(1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.

(2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.

(3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book.

(4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.

(5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.

(6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. We do not guarantee quality for disassembled products or the product re-mounted after removing from the mounting board. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.

(7) When reselling products described in this book to other companies without our permission and receiving any claim of request from the resale destination, please understand that customers will bear the burden.

(8) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.