Introduction
Panasonic offers a series of dual-wavelength and single-wavelength laser diode (LD) realized by the proprietary MOCVD fabrication technology. The LD, which emits 660nm and/or 780nm laser light, is assembled in a versatile TO-56 CAN package.

Application
- Optical disk drive
- Sensing
- Analysis
- Measurement
- Agriculture
- Other industrial use

Caution for Safety
The products are ranked “Class IIIb laser” according to IEC60825-1 and JIS standard 6802 “Laser Product Emission Safety Standards”, and can be hazardous to the human eyes, so that safety protection is necessary when laser beam is radiated.

The products contains Gallium Arsenide (GaAs). GaAs powder and vapor are hazardous to human health if inhaled or ingested. Do not burn, destroy, cut, cleave off, or chemically dissolve the product. Follow related laws and ordinances for disposal. The product should be excluded from general industrial waste or household garbage.

Package type
The Panasonic can provide two main types of LD package. One is a can type package and the other is an open-type frame package. In this note we provide explanations about a versatile TO-56 CAN type packaged LD series.

Please pay attention to the following points to make use of these advantages and ensure highly reliable operation.

Precautions for ESD (Electro Static Discharge) and surge stress
A laser diode (LD) is one of the most sensitive devices to ESD and electrical surge, so that strict precautions are required when using LDs. If electric pulses that may cause optical emission over the absolute maximum ratings of a laser power are applied to a LD, the LD will be damaged by its own light intensity, resulting in degradation in a short period. Therefore, taking all possible measures against ESD and electrical surge for LD usage is strongly required at the design stage and production line.

Please insert an appropriate protection circuit in the drive circuit of LD, check the whole drive circuits including machine power supply, and take appropriate steps, in order that spike noises generated by
turning on/off the power supply do not exceed the absolute maximum rating of LD. There is a possibility of laser destruction by unexpected electrical pulses generated by nearby equipment. Please avoid turning on/off a fluorescent lamp or other measurement equipment etc., near LD products.

Please take the following measures to prevent a LD from breaking by ESD when handling:

- Using a wrist band (through 1 MΩ)
- Setting conductive mats on the floor and work tables
- Wearing conductive work uniforms and shoes
- Grounding the tip of a solder iron

Use of an ionizer and control of humidity and temperature are recommended especially in a facility or environment where static electrical charge can be easily generated.

Precaution at soldering

Please pay special attention to any temperature rise when heating the solder. Excess heating to laser diode package during soldering may affect eutectic solder and/or laser diode itself. Soldering must be done as quickly as possible with controlling the heating temperature. Lead (terminal) soldering with appropriate cooling time is strongly recommended. Also soldering position of lead(terminal) is recommended to be more than 2mm away from the package body.

It is recommended to solder only one lead(terminal) at a time for a short period of time (after heating one lead with solder iron or laser beam etc., cooling down, then, heat another lead). Heating all the leads at once should be avoided. In addition, it is recommended to radiate heat by placing the package on a heat sink, because the package temperature becomes too high even when the lead alone is heated.

Please note that when a LD is exposed to mechanical stress like vibration etc. at high temperatures when soldering, the stress may affect the package, leading to possible change of LD characteristics.

- Soldering temperature, time and position

 Temperature
 - Below 350°C
 Time
 - Within 3sec recommended
 Soldering position
 - 2mm away from package body

Mechanical stress

Pressure to package
This product is hermetic-sealed from the atmosphere with metallic cap and window-glass. Excess mechanical stress may cause mechanical damage to the window-glass and/or breakage of the sealing, which will extremely shortening the lifetime of a LD. Special care should be taken to avoid excess mechanical stress to the LD package when attaching it to a heat sink.
Lead forming and cutting

Basically lead(terminal) is recommended to use with same condition as shipment. However, some sort of modification of lead forming or cutting may be required for its application. In such cases, please keep the following cautions. Lead forming is recommended to be 2.6mm away from the package body in order to avoid additional mechanical stress to the hermetic sealing. Also, lead forming or cutting has to be carried out at the room temperature before soldering. The forming and cutting process at high temperature may put thermal and mechanical stresses in the package, which cause severe degradation of laser diode characteristics.

Panasonic shall not be responsible for any failures and damages caused by customers lead forming and cutting process.

Storage condition (in-process)

The surface of package lead(terminal) is metallic plated to ensure good soldering and good electrical contact. Corrosive atmosphere during storage is likely to change its surface characteristics. From this view point, this product is packed in a damp-proof aluminum laminated bag to assure its quality at the shipment. In case of long-period storage after opening damp-proof packing, remaining devices should be used at least within one year to keep its quality. After opening the packing, a recommended storage condition until next mounting is in the ranges of 5～35℃ and 45～75%RH.

Heat sink design of LD

Generally, lifetime of laser diode device gets shorter as environmental temperature increases. It is important to design good heat dissipation scheme in order to maximize its performance.

Mounting example of CAN packaged LD is shown in Fig.2.

In applications using a heat sink, the most effective way to dissipate heat is bringing the heat sink into contact with the base plate.

In Fig.3 the influence of heat dissipation condition for the output power versus operating current is shown for a RED laser diode. If inadequate thermal management is used, the saturated output power can be less than half of that when appropriate thermal management is used.
If heat dissipation is not good enough, sometime may damage laser-diode with excess current supplied through APC (Auto Power Control) circuit.

LD driving

To operate an LD, constant and/or modulated current source is required, because LD is a current-driven device. The current source must have very low switching noise characteristics to prevent LD degradation due to surge currents associated with turning on/off of the electrical power. As temperature changes, optical output power from LD for a given current will change. Therefore, APC function is necessary for applications that require a constant output power over a wide rage of temperatures.

Usually, a photodiode (PD) is used to monitor the power. The signal from the PD will be fed back to the current source to maintain the output power from LD at a constant level.

Depending on the application type, LD driving current source should be selected, from the viewpoints of maximum current, maximum voltage, and with or without modulation and APC function.

Pin connections are shown in Fig.4.

Equivalent circuit

To assist with the selection of the LD driving current source, an equivalent circuit of Panasonic CAN packaged LD is shown in Fig.5.
LD parameters are calculated by fitting with actual S-parameter measurement result. Table 1 shows typical values under the condition of room temperature and 3mW output power from LD. These values are generally dependent on the temperature and injection current. Therefore, confirmation of matching between LD and the peripheral circuit is recommended.

Table 1 Parameter list of equivalent circuit

<table>
<thead>
<tr>
<th>parameter</th>
<th>LNCT28PS01WW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RED-LD side</td>
</tr>
<tr>
<td>R2</td>
<td>4.1Ω</td>
</tr>
<tr>
<td>R3</td>
<td>395.0Ω</td>
</tr>
<tr>
<td>R4</td>
<td>1.2Ω</td>
</tr>
<tr>
<td>L1</td>
<td>0.30nH</td>
</tr>
<tr>
<td>Cd1</td>
<td>54.5pF</td>
</tr>
<tr>
<td>Cd2</td>
<td>28.0pF</td>
</tr>
<tr>
<td>R1</td>
<td>≅0.6Ω</td>
</tr>
<tr>
<td>R5</td>
<td>1.3Ω</td>
</tr>
<tr>
<td>L2</td>
<td>2.2nH</td>
</tr>
<tr>
<td>Lw</td>
<td>≅2.2nH</td>
</tr>
<tr>
<td>Cp</td>
<td>≅1.44pF</td>
</tr>
</tbody>
</table>

Optical design

Collimating, focusing or spreading the output light beam from LD is realized by using lens systems. Important factors of the lens are wavelength, numerical aperture, focal length, working distance, and so on. Divergence angles of laser beam also need to be taken into account.

Others

This product is designed for normal use; general electronic equipment (e.g. office, communication, measuring equipment or home electric appliance etc.). If you consider the particular use (aero, space, traffic, combustion or safety equipment etc.) requiring specific quality and reliability, which may threaten human life or body in case of its accidents or errors, or the use which is out of the intended normal use, please consult our sales representatives.

We shall not be responsible for any failure caused by the use outside the scope of our warranty.

There is a possibility that volatile gas generated from something like adhesive or grease can exert a bad influence on the characteristics of LD. We recommend you assess potential risks of outgassing material under the actual condition of use.
安全上のご注意

危険
レーザビームを見たり触れたりしないでください。
最悪の場合は、失明または皮膚の損傷の恐れもありますのでご注意ください。

本書に記載の技術情報および半導体のご使用にあたってのお願いと注意事項

(1) 本書に記載の製品および技術情報を輸出または非居住者に提供する場合は、当該国における法令、特に安全保障輸出管理に関する法令を遵守してください。

(2) 本書に記載の技術情報は、製品の代表特性および応用回路例などを示したものであり、それをもってパナソニック株式会社または他社の知的財産権もしくはその他の権利の許諾を意味するものではありません。したがって、上記技術情報のご使用に起因して第三者所有の権利にかかわる問題が発生した場合、当社はその責任を負うものではありません。

(3) 本書に記載の製品は、一般用途(事務機器、通信機器、計測機器、家電製品など)、もしくは、本書に個別に記載されている用途に使用されることを意図しております。特別な品質、信頼性が要求され、その故障や誤動作が直接人命を脅かしたり、人体に危害を及ぼす恐れのある用途、特定用途(車載機器、航空、宇宙用、輸送機器、交通信号機器、燃焼機器、医療機器、安全装置など)でのご使用を想定される場合は事前に当社営業窓口までご相談の上、使用条件等に関して別途、文書での取り扱いをお願いします。文書での取り扱いなくご使用されたことにより発生した損害などについては、当社は一切の責任を負いません。

(4) 本書に記載の製品および製品仕様は、改良などのために予告なく変更する場合がありますのでご了承ください。したがって、最終的な設計、ご購入、ご使用に際しましては、事前に最新の製品規格書または仕様書をお求め願い、ご確認ください。

(5) 設計に際しては、絶対最大定格、動作保証条件(動作電源電圧、動作環境等)の範囲内でご使用いただきますようお願いいたします。特に絶対最大定格に対しては、電源投入および遮断時、各種モード切替時などの過渡状態においても、超えることのないように十分なご検討をお願いいたします。保証値を超えてご使用された場合、その後に発生した機器の故障、欠陥については当社として責任を負いません。また、保証値内のご使用であっても、半導体製品については通常予測される故障発生率、故障モードをご考慮の上、当社製品の動作が原因でご使用機器が人身事故、火災事故、社会的な損害などを生じさせない冗長設計、延焼対策設計、誤動作防止設計などのシステム上の対策を講じていただきますようお願いいたします。

(6) 製品取扱い時、実装時およびお客様の工場内における外的要因(ESD、EOS、熱的ストレス、機械的ストレス)による故障や特性変動を防止するために、使用上の注意事項の記載内容を守ってご使用ください。分解後や実装基板から取外し後に再実装された製品に対する品質保証は致しません。また、防湿包装を必要とする製品は、保存期間、開封後の放置時間など、個々の仕様書取り扱いの折に取り決めた条件を守ってご使用ください。

(7) 本書に記載の製品を当社へ許可なく転売され、万が一転売先から何らかの請求を受けた場合、お客様においてその対応をご負担いただきますことをご了承ください。

(8) 本書の一部または全部を当社の文書による承諾なしに、転載または複製することを堅くお断りいたします。