FG6K42060L
Silicon N-channel MOSFET (FET1)
Silicon P-channel MOSFET (FET2)

For Switching

Features
- Low drain-source ON resistance: RDS(on) typ.

 N-ch = 2 Ω (VGS = 4.0 V) P-ch: 95 mΩ (VGS = -4.0 V)
- Halogen-free / RoHS compliant
 (EU RoHS / UL-94 V-0 / MSL: Level 1 compliant)

Marking Symbol: Y7

Packaging
FG6K42060L Embossed type (Thermo-compression sealing):
3 000 pcs / reel (standard)

Absolute Maximum Ratings \(Ta = 25 \, ^\circ C \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>FET1 (Nch.) Drain-source Voltage</td>
<td>VDS</td>
<td>30</td>
<td>V</td>
</tr>
<tr>
<td>FET1 Gate-source Voltage</td>
<td>VGS</td>
<td>±12</td>
<td>V</td>
</tr>
<tr>
<td>FET1 Drain Current</td>
<td>ID</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>FET1 Drain Current (Pulsed)</td>
<td>IDp</td>
<td>200</td>
<td>mA</td>
</tr>
<tr>
<td>FET2 (Pch.) Drain-source Voltage</td>
<td>VDS</td>
<td>-20</td>
<td>V</td>
</tr>
<tr>
<td>FET2 Gate-source Voltage</td>
<td>VGS</td>
<td>±10</td>
<td>V</td>
</tr>
<tr>
<td>FET2 Drain Current</td>
<td>ID</td>
<td>-2</td>
<td>A</td>
</tr>
<tr>
<td>FET2 Drain Current (Pulsed)</td>
<td>IDp</td>
<td>-8</td>
<td>A</td>
</tr>
<tr>
<td>Overall Total Power Dissipation</td>
<td>PD</td>
<td>700</td>
<td>mW</td>
</tr>
<tr>
<td>Overall Channel Temperature</td>
<td>Tch</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Overall Storage Temperature</td>
<td>Tstg</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note: *1 Measuring on ceramic substrate at 40 mm × 38 mm × 0.1 mm.

PD absolute maximum rating Non-heat sink: 150 mW.
Electrical Characteristics \(Ta = 25 \, ^\circ C \pm 3 \, ^\circ C \)

FET1 (Nch.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-source Breakdown Voltage</td>
<td>VDSS</td>
<td>ID = 1 mA, VGS = 0 V</td>
<td>30</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>IDSS</td>
<td>VDS = 30 V, VGS = 0 V</td>
<td></td>
<td>1.0</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Gate-source Leakage Current</td>
<td>IGSS</td>
<td>VGS = (\pm 10 , V), VDS = 0 V</td>
<td></td>
<td>(\pm 10)</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Drain-source On-state Resistance (^*1)</td>
<td>RDS(on)1</td>
<td>ID = 10 mA, VGS = 2.5 V</td>
<td>3</td>
<td>6</td>
<td></td>
<td>(\Omega)</td>
</tr>
<tr>
<td></td>
<td>RDS(on)2</td>
<td>ID = 10 mA, VGS = 4.0 V</td>
<td>2</td>
<td>3</td>
<td></td>
<td>(\Omega)</td>
</tr>
<tr>
<td>Forward transfer admittance (^*1)</td>
<td>[Yfs]</td>
<td>ID = 10 mA, VDS = 3.0 V</td>
<td></td>
<td>20</td>
<td>55</td>
<td>mS</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>Ciss</td>
<td>VDS = 3.0 V, VGS = 0 V, f = 1 MHz</td>
<td></td>
<td>7</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>Coss</td>
<td>VDS = 3.0 V, VGS = 0 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse Transfer Capacitance</td>
<td>Crss</td>
<td>VGS = 0 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on Time (^*2)</td>
<td>ton</td>
<td>VDD = 3.0 V, VGS = 0 to 3.0 V</td>
<td></td>
<td>100</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off Time (^*2)</td>
<td>toff</td>
<td>VDD = 3.0 V, VGS = 3.0 to 0 V</td>
<td></td>
<td>100</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Note: Measuring methods are based on JAPANESE INDUSTRIAL STANDARD JIS C 7030 Measuring methods for transistors.

\(^*1\) Pulse measurement

\(^*2\) See Test circuit.

FET2 (Pch.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-source Breakdown Voltage</td>
<td>VDSS</td>
<td>ID = - 1 mA, VGS = 0 V</td>
<td>-20</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>IDSS</td>
<td>VDS = - 20 V, VGS = 0 V</td>
<td></td>
<td>-1.0</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Gate-source Leakage Current</td>
<td>IGSS</td>
<td>VGS = 8 V, VDS = 0 V</td>
<td></td>
<td>(\pm 10)</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Drain-source Threshold Voltage</td>
<td>Vth</td>
<td>ID = 1.0 mA, VDS = 3.0 V</td>
<td></td>
<td>-1.0</td>
<td>-1.1</td>
<td>V</td>
</tr>
<tr>
<td>Drain-source On-state Resistance (^*3)</td>
<td>RDS(on)1</td>
<td>ID = - 0.5 A, VGS = - 1.8 V</td>
<td>155</td>
<td>245</td>
<td></td>
<td>m(\Omega)</td>
</tr>
<tr>
<td></td>
<td>RDS(on)2</td>
<td>ID = - 1 A, VGS = - 2.5 V</td>
<td>115</td>
<td>185</td>
<td></td>
<td>m(\Omega)</td>
</tr>
<tr>
<td></td>
<td>RDS(on)3</td>
<td>ID = - 1 A, VGS = - 4.0 V</td>
<td>95</td>
<td>135</td>
<td></td>
<td>m(\Omega)</td>
</tr>
<tr>
<td>Forward transfer admittance (^*3)</td>
<td>[Yfs]</td>
<td>ID = - 1.0 A, VDS = - 10 V</td>
<td></td>
<td>3.0</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>Ciss</td>
<td>VDS = - 10 V, VGS = 0 V, f = 1 MHz</td>
<td></td>
<td>300</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>Coss</td>
<td>VDS = - 10 V, VGS = 0 V</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse Transfer Capacitance</td>
<td>Crss</td>
<td>VGS = 0 V</td>
<td></td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on Delay Time (^*4)</td>
<td>ton</td>
<td>VDD = - 10 V, VGS = 0 to - 4.0 V</td>
<td></td>
<td>14</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off Delay Time (^*4)</td>
<td>toff</td>
<td>VDD = - 10 V, VGS = - 4.0 to 0 V</td>
<td></td>
<td>112</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Note: Measuring methods are based on JAPANESE INDUSTRIAL STANDARD JIS C 7030 Measuring methods for transistors.

\(^*3\) Pulse measurement

\(^*4\) See Test circuit.
2 Test circuit

Vin

PW = 10 μs
D.C. ≤ 1 %

VDD = 3 V

ID = 10 mA
RL = 300 Ω

Vout

Vin

50 Ω

G

D

S

VDD

90 %

10 %

90 %

10 %

ton
toff
*4 Test circuit

VDD = -10 V

ID = -1 A
RL = 10 Ω

PW = 10 μs
D.C. ≤ 1 %

Vin

Vout

50 Ω

10 %

90 %

10 %

90 %

ton
toff
Dynamic Input/Output Characteristics

- **ID - VDS**
 - Drain Current ID (A) vs. Drain-source Voltage VDS (V)
 - Various VGS values shown:
 - VGS = -4.0 V
 - VGS = -2.5 V
 - VGS = -2.0 V
 - VGS = -1.5 V
 - VGS = -1.0 V
 - ID values:
 - 2.0 mA
 - 1.0 mA
 - 0.5 mA

- **ID - VGS**
 - Drain Current ID (A) vs. Gate-source Voltage VGS (V)
 - Various VDS values shown:
 - VDS = -10 V
 - VDS = -5 V
 - VDS = -2 V
 - VDS = -0.5 V
 - VDS = 0 V
 - Drain-source On-state Resistance RDS(on) (mΩ) vs. Drain Current ID (A)

- **VDS - VGS**
 - Capacitance C (pF) vs. Drain-source Voltage VDS (V)
 - Various Ciss, Coss, Crss values shown:
 - Ciss:
 - VDD = -10 V
 - Coss:
 - VDD = -10 V
 - Crss:
 - VDD = -10 V

- **RDS(on) - ID**
 - Gate-source Voltage VGS (V) vs. Total Gate Charge Qg (nC)
 - VDD = -10 V

![Graphs showing dynamic input/output characteristics](image-url)
Gate-source Threshold voltage (Vth)

- **Temperature (°C)**
 - Vth vs. Temperature graph

Drain-source On-state Resistance (RDS(on))

- **Temperature (°C)**
 - RDS(on) vs. Temperature graph

Total Power Dissipation (PD)

- **Temperature (°C)**
 - PD vs. Temperature graph

Thermal Resistance (Rth)

- **Pulse Width (tsw)**
 - Rth vs. Pulse Width graph

Safe Operating Area

- **Drain-source Voltage (VDS)**
 - Operation area

Drain Current (ID)

- **Drain-source Voltage (VDS)**
 - Operation area
WSMini6-F1-B (Unit: mm)

- Land Pattern (Reference) (Unit: mm)
Request for your special attention and precautions in using the technical information and semiconductors described in this book

(1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.

(2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.

(3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book.

Please consult with our sales staff in advance for information on the following applications, moreover please exchange documents separately on terms of use etc.: Special applications (such as for in-vehicle equipment, airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, medical equipment and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.

Unless exchanging documents on terms of use etc. in advance, it is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application.

(4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.

(5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.

Even when the products are used within the guaranteed values, take into consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.

(6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. We do not guarantee quality for disassembled products or the product re-mounted after removing from the mounting board.

When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.

(7) When reselling products described in this book to other companies without our permission and receiving any claim of request from the resale destination, please understand that customers will bear the burden.

(8) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.