FG6543010R
Silicon N-channel MOSFET (FET1)
Silicon P-channel MOSFET (FET2)

For switching

- Features
 - Low drive voltage: 2.5 V drive
 - Halogen-free / RoHS compliant
 (EU RoHS / UL-94 V-0 / MSL: Level 1 compliant)

- Marking Symbol: V7

- Basic Part Number
 FJ330301 + FK330301 (Individual)

- Packaging
 FG6543010R Embossed type (Thermo-compression sealing):
 3,000 pcs/reel (standard)

Absolute Maximum Ratings Ta = 25 °C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-source Voltage</td>
<td>VDS</td>
<td>30</td>
<td>V</td>
</tr>
<tr>
<td>Gate-source Voltage</td>
<td>VGS</td>
<td>±12</td>
<td>V</td>
</tr>
<tr>
<td>Drain Current</td>
<td>ID</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>Drain Current (Pulsed)</td>
<td>IDp</td>
<td>200</td>
<td>mA</td>
</tr>
<tr>
<td>Drain-source Voltage</td>
<td>VDS</td>
<td>-30</td>
<td>V</td>
</tr>
<tr>
<td>Gate-source Voltage</td>
<td>VGS</td>
<td>±12</td>
<td>V</td>
</tr>
<tr>
<td>Drain Current</td>
<td>ID</td>
<td>-100</td>
<td>mA</td>
</tr>
<tr>
<td>Drain Current (Pulsed)</td>
<td>IDp</td>
<td>-200</td>
<td>mA</td>
</tr>
<tr>
<td>Total Power Dissipation</td>
<td>PD</td>
<td>150</td>
<td>mW</td>
</tr>
<tr>
<td>Channel Temperature</td>
<td>Tch</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>Tstg</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Publication date: October 2012 Ver. CED
Electrical Characteristics \(T_a = 25 \ ^\circ C \pm 3 \ ^\circ C \)

FET1(Nch.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-source Breakdown Voltage</td>
<td>VDSS</td>
<td>ID = 1 mA, VGS = 0 V</td>
<td>30</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>IDSS</td>
<td>VDS = 30 V, VGS = 0 V</td>
<td></td>
<td>1.0</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Gate-source Leakage Current</td>
<td>IGSS</td>
<td>VGS = ±10 V, VDS = 0 V</td>
<td></td>
<td>±10</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Gate-source Threshold Voltage</td>
<td>Vth</td>
<td>ID = -1 mA, VDS = 3.0 V</td>
<td>0.5</td>
<td>1.0</td>
<td>1.5</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Drain-source On-state Resistance</td>
<td>RDS(on)1</td>
<td>ID = 10 mA, VGS = 2.5 V</td>
<td>3</td>
<td>6</td>
<td></td>
<td>(\Omega)</td>
</tr>
<tr>
<td></td>
<td>RDS(on)2</td>
<td>ID = 10 mA, VGS = 4.0 V</td>
<td>2</td>
<td>3</td>
<td></td>
<td>(\Omega)</td>
</tr>
<tr>
<td>Forward transfer admittance</td>
<td>(</td>
<td>Yfs</td>
<td>)</td>
<td>ID = 10 mA, VDS = 3.0 V</td>
<td>20</td>
<td>55</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>Ciss</td>
<td>VDS = 3 V, VGS = 0 V, f = 1 MHz</td>
<td>7</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>Coss</td>
<td>VDS = 3 V, VGS = 0 V, f = 1 MHz</td>
<td></td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Reverse Transfer Capacitance</td>
<td>Crss</td>
<td>VDS = 3 V, VGS = 0 V, f = 1 MHz</td>
<td></td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Turn-on Time (^1)</td>
<td>ton</td>
<td>VDD = 3 V, VGS = 0 V to 3 V</td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ID = 10 mA</td>
<td>100</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off Time (^1)</td>
<td>ton</td>
<td>VDD = 3 V, VGS = 3 V to 0 V</td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ID = 10 mA</td>
<td>100</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Note: Measuring methods are based on JAPANESE INDUSTRIAL STANDARD JIS C 7030 Measuring methods for transistors.

\(^1\) See FET1 Test circuit.

FET2(Pch.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-source Breakdown Voltage</td>
<td>VDSS</td>
<td>ID = 1 mA, VGS = 0 V</td>
<td>-30</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>IDSS</td>
<td>VDS = -30 V, VGS = 0 V</td>
<td></td>
<td>-1.0</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Gate-source Leakage Current</td>
<td>IGSS</td>
<td>VGS = ±10 V, VDS = 0 V</td>
<td></td>
<td>±10</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Gate-source Threshold Voltage</td>
<td>Vth</td>
<td>ID = -1 mA, VDS = -3.0 V</td>
<td>-0.5</td>
<td>-1.0</td>
<td>-1.5</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Drain-source On-state Resistance</td>
<td>RDS(on)</td>
<td>ID = -10 mA, VGS = -2.5 V</td>
<td>7</td>
<td>17</td>
<td></td>
<td>(\Omega)</td>
</tr>
<tr>
<td></td>
<td>RDS(on)2</td>
<td>ID = -10 mA, VGS = -4.0 V</td>
<td>4</td>
<td>7</td>
<td></td>
<td>(\Omega)</td>
</tr>
<tr>
<td>Forward transfer admittance</td>
<td>(</td>
<td>Yfs</td>
<td>)</td>
<td>ID = -10 mA, VDS = -3.0 V</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>Ciss</td>
<td>VDS = -3 V, VGS = 0 V, f = 1 MHz</td>
<td>7</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>Coss</td>
<td>VDS = -3 V, VGS = 0 V, f = 1 MHz</td>
<td></td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Reverse Transfer Capacitance</td>
<td>Crss</td>
<td>VDS = 3 V, VGS = 0 V, f = 1 MHz</td>
<td></td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Turn-on Time (^2)</td>
<td>ton</td>
<td>VDD = -3 V, VGS = 0 V to -3 V,</td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ID = -10 mA</td>
<td>100</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off Time (^2)</td>
<td>ton</td>
<td>VDD = -3 V, VGS = -3 V to 0 V,</td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ID = -10 mA</td>
<td>100</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Note: Measuring methods are based on JAPANESE INDUSTRIAL STANDARD JIS C 7030 Measuring methods for transistors.

\(^2\) See FET2 Test circuit.
*1 FET1 Test circuit

FET1(Nch.)

Vin

PG = 10 \mu s
D.C. \leq 1 \%

VDD = 3 V

ID = 10 mA
RL = 300 \Omega

Vin

G

S

Vout

90 %

10 %

ton

toff

10 %

90 %
*2 FET2 Test circuit

FET2(Pch.)

VDD = -3 V
ID = -10 mA
RL = 300 Ω

0 V
VDD
Vin
50 Ω
G
S
D
VDD
Vin

PW = 10μs
D.C. ≤ 1 %

10 %
90 %
10 %
90 %

ton
toff

Vin
Vout
FET1(Nch.)

Ver. CED

FG6543010R

Safe Operating Area

Drain-source Voltage $V_{DS} (V)$
Drain Current $I_D (A)$

$ID_p = 0.2 \ A$

Operation in this area is limited by $R_{DS(on)}$.

$Ta = 25 °C$
Glass epoxy board (25.4 \times 25.4 \times t0.8mm) coated with copper foil, which has more than 300mm2.

Gate-source Threshold Voltage $V_{th} (V)$

$V_{th} - Ta$

Drain-source On-state Resistance $R_{DS(on)} (\Omega)$

$R_{DS(on)} - Ta$

Total Power Dissipation $P_D (W)$

$P_D - Ta$

Thermal Resistance $R_{th} (\degree C/W)$

$R_{th} - tsW$

Temperature $Ta (°C)$

-50 0 50 100 150

0 1 2 3 4

-50 0 50 100 150 200

0 1 10 100

0.001 0.01 0.1 1 10

0.0001 0.001 0.01 0.1 1 10

-50 0 50 100 150

0 1 2 3 4

0 0.1 1 10 100 1000

0.001 0.01 0.1 1 10 100 1000
Drain Current I_D vs. Drain-source Voltage V_{DS}

Gate-source Voltage V_{GS} vs. Drain Current I_D

Drain-source On-state Resistance $R_{DS(on)}$ vs. Drain Current I_D

Capacitance vs. Drain-source Voltage V_{DS}

Ver. CED
FET2(Pch.)

Safe Operating Area

- **Gate-source Threshold Voltage** (V_{th}) vs. Temperature (T_a)
- **Drain-source On-state Resistance** ($R_{DS(on)}$) vs. Temperature (T_a)
- **Total Power Dissipation** (P_D) vs. Temperature (T_a)
- **Thermal Resistance** (R_{th}) vs. Pulse Width (t_{sw})

Gate-source Threshold Voltage (V_{th})

- V_{th} vs. T_a graph

Drain-source On-state Resistance ($R_{DS(on)}$)

- $R_{DS(on)}$ vs. T_a graph

Total Power Dissipation (P_D)

- P_D vs. T_a graph

Thermal Resistance (R_{th})

- R_{th} vs. t_{sw} graph

Operation in this area is limited by $R_{DS(on)}$

- Glass epoxy board ($25.4 \times 25.4 \times 0.8$ mm) coated with copper foil, which has more than 300 mm2.

Drain-source Voltage (V_{DS})

- V_{DS} vs. Drain Current (I_D) graph

Pulse Width (t_{sw})

- t_{sw} vs. R_{th} graph
SMini6-F3-B

Unit: mm

Land Pattern (Reference) (Unit: mm)
Request for your special attention and precautions in using the technical information and semiconductors described in this book

(1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.

(2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.

(3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book.

(4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.

(5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.

(6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. We do not guarantee quality for disassembled products or the product re-mounted after removing from the mounting board.

(7) When reselling products described in this book to other companies without our permission and receiving any claim of request from the resale destination, please understand that customers will bear the burden.

(8) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.