AN6105FHN
Quadrature demodulation IC for CDMA system mobile telephone

Overview

The AN6105FHN is a quadrature demodulation IC for a CDMA system mobile telephone, incorporating a reception IF for IS-95 and GCA plus quadrature demodulator.

Features

- Current consumption: 11 mA typ.
- Gain control range: +85 dB to −5 dB
- High linearity control characteristic: ±3 dB
- Temperature dependency: ±3 dB

Applications

- Cellular telephone (IS-95)

Block Diagram
Pin Descriptions

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Description</th>
<th>Pin No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND (GCA)</td>
<td>9</td>
<td>I output</td>
</tr>
<tr>
<td>2</td>
<td>I, Q output operating point adjustment</td>
<td>10</td>
<td>GND (base band)</td>
</tr>
<tr>
<td>3</td>
<td>Q operating point offset adjustment</td>
<td>11</td>
<td>Local signal input</td>
</tr>
<tr>
<td>4</td>
<td>I operating point offset adjustment</td>
<td>12</td>
<td>Sleep</td>
</tr>
<tr>
<td>5</td>
<td>Q output</td>
<td>13</td>
<td>Gain adjustment</td>
</tr>
<tr>
<td>6</td>
<td>Q output</td>
<td>14</td>
<td>Supply voltage (GCA)</td>
</tr>
<tr>
<td>7</td>
<td>Supply voltage (base band)</td>
<td>15</td>
<td>Signal input (+)</td>
</tr>
<tr>
<td>8</td>
<td>I output</td>
<td>16</td>
<td>Signal input (–)</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{CC}</td>
<td>4.2</td>
<td>V</td>
</tr>
<tr>
<td>Supply current</td>
<td>I_{CC}</td>
<td>24</td>
<td>mA</td>
</tr>
<tr>
<td>Power dissipation *</td>
<td>P_D</td>
<td>100</td>
<td>mW</td>
</tr>
<tr>
<td>Operating ambient temperature *</td>
<td>T_{opr}</td>
<td>−30 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature *</td>
<td>T_{sig}</td>
<td>−55 to +125</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note) *1: Except for the operating ambient temperature and storage temperature, all ratings are for $T_a = 25^\circ$C.

2: P_D is the value at $T_a = 85^\circ$C without a heatsink. Use this device within the range of allowable power dissipation referring to Technical Data $\bullet P_D = T_a$ curves of QFN016-P-0304.

Recommended Operating Range

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Range</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{CC}</td>
<td>2.55 to 4.00</td>
<td>V</td>
</tr>
</tbody>
</table>

Electrical Characteristics at $T_a = 25^\circ$C

Unless otherwise specified, $V_{CC} = 2.8$ V, $V_{SLP} = 2.8$ V, $V_{GC} = 2.5$ V, $V_{LO} = −10$ dBm: $f = 223.7$ MHz, V_{IN}: $f = 112.35$ MHz, V_{I}, V_{IX}, V_{Q}, V_{QX}: $f = 500$ kHz, a measurement in high impedance be made for V_{I}, V_{IX}, V_{Q} and V_{QX}.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current consumption</td>
<td>I_{TOT}</td>
<td>V_{IN}, V_{LO}: No input</td>
<td>6</td>
<td>11</td>
<td>15</td>
<td>mA</td>
</tr>
<tr>
<td>Current consumption (sleep)</td>
<td>I_{SLP}</td>
<td>V_{IN}, V_{LO}: No input, $V_{I2} = 0$ V</td>
<td></td>
<td>0</td>
<td>10</td>
<td>μA</td>
</tr>
<tr>
<td>Conversion gain 1</td>
<td>$G_{GC(1)}$</td>
<td>Conversion gain between V_{IN} and V_{I} $V_{GC} = 2.5$ V, $V_{IN} = 5$ dBμV</td>
<td>80</td>
<td>85</td>
<td>90</td>
<td>dB</td>
</tr>
<tr>
<td>Conversion gain 2</td>
<td>$G_{GC(2)}$</td>
<td>Conversion gain between V_{IN} and V_{I} $V_{GC} = 0.1$ V, $V_{IN} = 85$ dBμV</td>
<td>−18</td>
<td>−12</td>
<td>−9</td>
<td>dB</td>
</tr>
<tr>
<td>IQ maximum output</td>
<td>V_{IQ}</td>
<td>Output level of V_{I}, V_{IX}, V_{Q} and V_{QX} $V_{GC} = 2.5$ V, $V_{IN} = 40$ dBμV</td>
<td>1</td>
<td>1.8</td>
<td>—</td>
<td>V[p–p]</td>
</tr>
<tr>
<td>Noise figure</td>
<td>NF</td>
<td>$V_{GC} = 2.5$ V</td>
<td></td>
<td>7</td>
<td>8.5</td>
<td>dB</td>
</tr>
</tbody>
</table>
Electrical Characteristics at $T_a = 25^\circ C$ (continued)

Unless otherwise specified, $V_{CC} = 2.8 \text{ V}$, $V_{SLP} = 2.8 \text{ V}$, $V_{GC} = 2.5 \text{ V}$, $V_{LO} = -10 \text{ dBm}$: $f = 223.7 \text{ MHz}$, V_{IN}: $f = 112.35 \text{ MHz}$, V_{I}, V_{IX}, V_{Q}, V_{QX}: $f = 500 \text{ kHz}$, a measurement for high impedance be made for V_{I}, V_{IX}, V_{Q} and V_{QX}.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input IP3</td>
<td>IIP3</td>
<td>Input IP3 value at 60 dB ± 1 dB of conversion gain</td>
<td>65</td>
<td>69</td>
<td>—</td>
<td>dBμV</td>
</tr>
<tr>
<td>Gain adjustment sensitivity</td>
<td>β_{GCA}</td>
<td>Gain variation at $V_{GC} = 0.5 \text{ V}$ to 2.5 V</td>
<td>42</td>
<td>45</td>
<td>48</td>
<td>dB/V</td>
</tr>
<tr>
<td>Quadrature demodulation error</td>
<td>IQERR</td>
<td>$V_{GC} = 1.5 \text{ V}$, $V_{IN} = 47 \text{ dBμV}$</td>
<td>—</td>
<td>-25</td>
<td>-20.5</td>
<td>dB</td>
</tr>
<tr>
<td>Local signal input level</td>
<td>V_{LO}</td>
<td>Voltage to get I_{TOT} of 10 μA and less</td>
<td>-20</td>
<td>-10</td>
<td>-7</td>
<td>dBm</td>
</tr>
<tr>
<td>Sleep control (low)</td>
<td>$V_{SLP(1)}$</td>
<td>Voltage to get I_{TOT} of 10 μA and less</td>
<td>—</td>
<td>—</td>
<td>0.2</td>
<td>V</td>
</tr>
<tr>
<td>Sleep control (high)</td>
<td>$V_{SLP(2)}$</td>
<td>Voltage for an operating mode</td>
<td>2.3</td>
<td>—</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>Gain adjustment voltage</td>
<td>V_{GC}</td>
<td>0.1 — 2.6 V</td>
<td>1.2</td>
<td>1.5</td>
<td>1.7</td>
<td>V</td>
</tr>
<tr>
<td>IQ operating point voltage</td>
<td>V_{IQ}</td>
<td>DC operating point voltage at no adjustment for IQ output (pin 5, pin 6, pin 8 and pin 9)</td>
<td>1.2</td>
<td>1.5</td>
<td>1.7</td>
<td>V</td>
</tr>
<tr>
<td>IQ operating point deviation</td>
<td>ΔV_{IQ}</td>
<td>DC operating point voltage difference between V_{I}, V_{IX} and V_{Q}, V_{QX} (at no adjustment)</td>
<td>-250</td>
<td>0</td>
<td>250</td>
<td>mV</td>
</tr>
</tbody>
</table>

- **Design reference data**

 Note: The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IQ output deviation</td>
<td>ΔV_{IQ}</td>
<td>Level ratio between IQ signals (differential), $V_{GC} = 1.5 \text{ V}$, $V_{IN} = 47 \text{ dBμV}$</td>
<td>-0.8</td>
<td>0</td>
<td>0.8</td>
<td>dB</td>
</tr>
<tr>
<td>IQ output phase difference</td>
<td>$\Delta \theta_{IQ}$</td>
<td>Phase difference between IQ signals (differential), $V_{GC} = 1.5 \text{ V}$, $V_{IN} = 47 \text{ dBμV}$</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>deg</td>
</tr>
</tbody>
</table>

Terminal Equivalent Circuits

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Equivalent circuit</th>
<th>Description</th>
<th>DC voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND (GCA): Ground pin of GCA system.</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>2, 3, 4</td>
<td></td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>

Maintenance/Discontinued

Maintenance/Discontinued includes following four Product lifecycle stage. (planned maintenance type, maintenance type, planned discontinued type, discontinued type)
Terminal Equivalent Circuits (continued)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Equivalent circuit</th>
<th>Description</th>
<th>DC voltage (V)</th>
</tr>
</thead>
</table>
| 5, 6 | ![Equivalent Circuit 5, 6](image1) | Pin 5: \bar{Q} output: Pin to output the \bar{Q} signal.
Pin 6: Q output: Pin to output the Q signal. | 1.5 |
| 7 | — | Supply voltage (base band): Supply voltage pin of base band system. | 2.8 |
| 8, 9 | ![Equivalent Circuit 8, 9](image2) | Pin 8: I output: Pin to output the I signal.
Pin 9: I output: Pin to output the I signal. | 1.5 |
| 10 | — | GND (base band): Ground pin of base band system. | — |
| 11 | ![Equivalent Circuit 11](image3) | Local signal input: Input pin of local signal for IQ demodulation. | 2.7 |
| 12 | ![Equivalent Circuit 12](image4) | Sleep: Operating mode: Connect this pin to supply voltage pin.
Sleep mode: Connect to GND. | — |
Terminal Equivalent Circuits (continued)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Equivalent circuit</th>
<th>Description</th>
<th>DC voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td></td>
<td>Gain adjustment: Adjusts gain. Possible to apply voltage from 0 to a supply voltage.</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>—</td>
<td>Supply voltage (GCA): Supply voltage pin of GCA system.</td>
<td>—</td>
</tr>
</tbody>
</table>

Usage Note

There are two systems of a supply voltage pin for this device. (Pin 7, pin 14) Apply the same voltage simultaneously to these two pins on use. (Keep either of them from being off.)

Technical Data

- P_D — T_a curves of QFN016-P-0304A

![Power dissipation vs. ambient temperature](image3)

- Mount on standard board (glass epoxy: 50 mm \times 50 mm \times 0.8 mm) $\theta_{ja}=171.2{^\circ}C/W$
- Independent IC without a heat shink $\theta_{ja}=397.4{^\circ}C/W$
Application Circuit Example

Gain control
GCA VCC
IF in
IF in X
Gain control
GCA VCC
IF in
IF in X
GCA control
1/2 π/2
Offset adjustment
I-IX adjustment
Q-QX adjustment
IX out
Q out
QX out

Sleep
2nd local
B.B GND
B.B VCC
VREF (I, Q)
GCA GND

Maintenance/Discontinued includes following four Product lifecycle stage.
(planed maintenance type, maintenance type, planed discontinued typed, discontinued type)
Request for your special attention and precautions in using the technical information and semiconductors described in this book

(1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.

(2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.

(3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
Consult our sales staff in advance for information on the following applications:
- Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
- Any applications other than the standard applications intended.

(4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.

(5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.

(6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.

(7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.