INVERTER DV-505E SERIES

For speed control of three-phase induction motor

OPERATION MANUAL

To avoid improper handling or misapplications of this product which may damage or shorten its service life, read this instruction manual carefully. Please keep this manual for future reference.
1. THE FIRST STEP .. 1
 1.1 After unpacking ... 1
 1.2 Cautions for safety ... 2

INSTALLATION OF INVERTER
 2.1 Place of installation ... 3
 2.2 Assembling into control panel 5

3. STANDARD SPECIFICATION .. 6
 3.1 Specification table .. 6
 3.2 Outline dimensional drawing 8

4. STANDARD CONNECTION AND OPERATION 9
 4.1 Operation mode .. 9
 4.2 Description of terminals 11
 4.3 Standard connection of external command mode 13
 (operation mode 0)
 4.4 Standard connection of internal command mode 14
 (operation mode 1)
 4.5 Standard connection of 4-speed operation mode 15
 (operation mode 2)
 4.6 Standard connection with operation panel 16
 4.7 Cautions for connection 17
 4.8 Operation ... 19
 4.9 Closing and breaking at inverter output side 20
 4.10 Selection of peripheral devices 21

5. ADJUSTMENT
 5.1 Adjustment devices ... 23
 5.2 Parameters and adjustment 25

6. PROTECTIVE FUNCTIONS .. 34

7. TROUBLES ... 35
 7.1 Trip ... 35
 7.2 Judgement of abnormality 35
 7.3 Trouble due to insufficient capacity of 36
 inverter tripping
 7.4 Reset after malfunction of inverter 36

8. OPTIONS .. 37
1. THE FIRST STEP

1.1 After unpacking

- Check the following points.

1) Make sure the delivered unit is exactly the one you've ordered. What's the model? How about the output?

2) Check if any part has been damaged during transportation.

* If you find any defect, please contact your dealer immediately.

- Coding of model

```
DV - 505E - 750 P
```

- **P**: P type ... with operation panel
 Frequency meter, frequency setting dial, and operation command switch are all contained in the case. It's ready to run after being wiring to the power source and the motor.

- **S**: S type ... without operation panel
 For remote control only. It cannot generally be operated without using operation command switch and the frequency setting dial. However, when operated in internal command mode, it may be put in action by short-circuiting terminals 5-6 or 6-7.
1.2 Cautions for safety

(1) Do not connect power source to the output terminals for motor (U, V, W or T1, T2, T3).

(2) After turning off the power source, a certain waiting time is necessary only to allow the capacitor to discharge. Commence servicing/checking after the CHARGE lamp (LED1, red) located the terminal V (T2) of PCB has gone out.

(3) Note that the power source is not disconnected if the operation command switch is set to stop position.

(4) If the inverter will not be used for an extended period turn off the power source.

(5) When operating the inverter, use the no-fuse breaker (NFB) and thermal relay (TH-Ry) according to the wiring diagram. Select the thermal relay according to the motor rating.

(6) Since the inverter DV-505E series is for wall-mount use, always mount it in vertical position. Do not install it horizontally.

(7) Make sure of the ground connection. The ground terminal (E) should be connected to the earth ground.

(8) When using at frequencies higher than 60 Hz, check the allowable maximum speed of your machine including the motor itself.

(9) Always replace the furnished terminal cover on the terminal in order to prevent electric shock. This terminal cover can be easily removed or replaced by the hook provided.
2. INSTALLATION OF INVERTER

2.1 Place of installation

(1) The DV-505E series inverter is of wall-mount type. Install vertically, and keep a sufficient free space for ventilation.

NOTES) - Mount securely with screws or bolts by making use of the base mounting plate so that stress as such as bending twisting may not be applied to the inverter’s main body.

- Use M6 screws and bolts. As for the mounting pitch, see the external dimensions.

(2) Install at ambient temperature of -10°C to +40°C. When installed out of this range, erroneous operation or trouble may occur.

-10°C to 40°C

(3) Do not install in location exposed to direct sunlight.

(4) Avoid hot, damp, dusty or atmospheres filled with iron dust.
(5) Avoid corrosive gas atmosphere, and keep off splashes of coolant.

(6) Do not install in an area subject to vibration.

(7) The control box is not of waterproof structure. Do not use outdoors.
2.2 Assembling into control panel

Setting into open control panel

Put into a well ventilated box. Always keep a free area of more than 10 cm around the inverter to allow ventilation.

Setting into enclosed control panel

<table>
<thead>
<tr>
<th>Inverter capacity</th>
<th>Enclosed, dust-proof type</th>
<th>Req'd cooling area</th>
<th>Box size</th>
</tr>
</thead>
<tbody>
<tr>
<td>DV-505E-400 SP</td>
<td>Loss 60 W</td>
<td>1.12 m²</td>
<td>400W × 300L × 600H</td>
</tr>
<tr>
<td>DV-505E-750 SP</td>
<td>Loss 90 W</td>
<td>1.80 m²</td>
<td>400W × 300L × 1100H</td>
</tr>
</tbody>
</table>

- The box size is given in the unit of mm.
- The box size is for reference because the actual size varies significantly depending on the ambient temperature and other conditions.
- Other heat generation than that from inverter is not taken into consideration in the given box size.
3. STANDARD SPECIFICATION

3.1 Specification table
DV-505E SERIES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DV-505E-400S<sub>p</sub></th>
<th>DV-505E-750S<sub>p</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicable motor output (kW) *1</td>
<td>0.4</td>
<td>0.75</td>
</tr>
<tr>
<td>Output capacity (kVA)</td>
<td>1.0</td>
<td>1.7</td>
</tr>
<tr>
<td>Rated output current (A)</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Max. output voltage *2</td>
<td>3-phase AC 230 V</td>
<td></td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>2.3</td>
<td>2.5</td>
</tr>
<tr>
<td>Protective structure</td>
<td>Open type</td>
<td></td>
</tr>
<tr>
<td>Voltage, frequency</td>
<td>3-phase AC 230 V, 50/60 Hz</td>
<td></td>
</tr>
<tr>
<td>Allowable voltage regulation</td>
<td>180-242 V</td>
<td></td>
</tr>
<tr>
<td>Allowable frequency variation</td>
<td>±5%</td>
<td></td>
</tr>
<tr>
<td>Control method</td>
<td>Carrier frequency constant sine wave FWM control</td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>1.5 to 60 Hz, 3 to 120 Hz (start/stop from 1 Hz)</td>
<td></td>
</tr>
<tr>
<td>Frequency resolution</td>
<td>0.24 Hz (at-60 Hz), 0.48 Hz (at-120 Hz)</td>
<td></td>
</tr>
<tr>
<td>Frequency precision</td>
<td>±0.5% (25°C±10°C)</td>
<td></td>
</tr>
<tr>
<td>Voltage/frequency ratio</td>
<td>V/F ratio constant up to 60 Hz; V constant after 60 Hz torque boost (voltage UP at low frequency)</td>
<td></td>
</tr>
<tr>
<td>Frequency setting signal</td>
<td>DC 0-+5 V</td>
<td></td>
</tr>
<tr>
<td>Overcurrent capacity</td>
<td>150%, 2 minutes</td>
<td></td>
</tr>
<tr>
<td>Regenerative brake torque</td>
<td>20% (short-time)</td>
<td></td>
</tr>
<tr>
<td>Maximum brake torque</td>
<td>DC dynamic brake (0 to 100%: 3 Hz or less; 0 to 60%: all range)</td>
<td></td>
</tr>
<tr>
<td>Acceleration/deceleration time *3</td>
<td>0-1.4 sec (0.2 sec step), 0-70 sec (10 sec step)</td>
<td>0-3.5 sec (0.5 sec step), 0-140 sec (20 sec step)</td>
</tr>
<tr>
<td></td>
<td>0-7 sec (1 sec step), 0-700 sec (100 sec step)</td>
<td>0-14 sec (2 sec step), 0-1400 sec (200 sec step)</td>
</tr>
</tbody>
</table>

[60 Hz reference time]
Setting possible separately for acceleration/deceleration
<table>
<thead>
<tr>
<th>Model</th>
<th>DV-505E-400S</th>
<th>DV-505E-750S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jogging frequency range</td>
<td>0-25 Hz</td>
<td></td>
</tr>
<tr>
<td>Operation mode</td>
<td></td>
<td>One mode is selected by internal switch.</td>
</tr>
<tr>
<td>External command mode</td>
<td>Frequency setting by external VR</td>
<td></td>
</tr>
<tr>
<td>Internal command mode</td>
<td>Frequency setting by internal VR</td>
<td></td>
</tr>
<tr>
<td>4-speed operation mode</td>
<td>Frequency setting of external VR (1st speed), parameters (2nd to 4th speeds). (However, jogging function and free-run function are not effective.)</td>
<td></td>
</tr>
<tr>
<td>Protective function</td>
<td>Overcurrent shut-off, regenerative overvoltage shut-off, instantaneous power failure protection, undervoltage protection</td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td>Trip, charge (power source), parameter display, undervoltage warning</td>
<td></td>
</tr>
<tr>
<td>Ambient conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>-10°C to 40°C (not to be frozen). *Without main body case, -10 to 50°C</td>
<td></td>
</tr>
<tr>
<td>Ambient humidity</td>
<td>90% RH or less (not to condense dew)</td>
<td></td>
</tr>
<tr>
<td>Atmosphere</td>
<td>Free from corrosive gas</td>
<td></td>
</tr>
<tr>
<td>Altitude</td>
<td>1,000 m or less</td>
<td></td>
</tr>
<tr>
<td>Vibration</td>
<td>0.5G or less</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>Reset or free-run stop switch built-in, free-run stop (none in 4-speed operation mode)</td>
<td></td>
</tr>
</tbody>
</table>

NOTES: Remember these application requirements

*1. Always choose an A.C. motor that does not exceed the rating of the inverter.

*2. Be certain that the output voltage required does not exceed the supply voltage.

*3. In the case of 0 sec setting, the time when the frequency actually reaches 60 Hz is about 0.05 sec and it takes about 0.1 sec in deceleration.
3.2 Outline dimensional drawing
4. STANDARD CONNECTION AND OPERATION

4.1 Operation mode

The DV-505E has three operation modes. Select a proper mode according to the application. Concerning the parameters mentioned below, see par. 5.2 "Parameters and adjustment."

<table>
<thead>
<tr>
<th>Function</th>
<th>Normal/reverse rotation with acceleration/deceleration time</th>
<th>Dynamic brake</th>
<th>Jogging</th>
<th>Free-run stop</th>
<th>Upper, lower limits</th>
<th>Trip reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation mode</td>
<td>1 speed 4 speeds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External command mode (operation mode 0)</td>
<td></td>
<td>○</td>
<td>x</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Internal command mode (operation mode 1)</td>
<td></td>
<td>○</td>
<td>x</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>4-speed operation mode (operation mode 2)</td>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

External command mode (operation mode 0)

This is the most commonly used operation mode. A voltage of 0 to 5 volts applied between control terminals 2 and 3 from external VR or the like becomes the frequency command. Jogging and free-run stop functions are standard capabilities.

(1) Jogging

This is a function to deliver a low frequency constantly at zero acceleration/deceleration time, and it is ideal for inching and positioning. By operating the normal, reverse rotation switch with the control terminals 8-6 short-circuited, the frequency set by parameter [8] is delivered. It is also possible to transfer from normal operation to jogging, or from jogging to normal operation. Please note, however, that a trip due to excessive current may take place if the jogging frequency is too high.

(2) Free-run stop (spontaneous stop)

Voltage application to the motor is cut off instantly, and the motor "free-runs" and stops. This function is particularly useful when driving brake motor. During free-run stop, however, the motor terminals are not isolated. Do not touch the internal parts or you may get electric shock.
(3) Dynamic brake

This is a function of applying the brake by temporarily passing a direct current into the motor when the inverter is about to stop operation. The DV-505E can select two types of dynamic brake by changing over the dip switch.

1) Dynamic brake under 3 Hz

When a stop command (both normal rotation switch and reverse rotation switch are OFF or ON) is given to the inverter, the operation slows down softly until the output frequency becomes less than 3 Hz. At this point, a direct current is passed into the motor for a specified time. The brake torque (DBT) and brake time (DBT) can be set by parameters. From the jogging operation, a dynamic brake of less than 3 Hz is applied.

NOTE: When the frequency command is set at zero, if the frequency becomes less than 1 Hz instead of 3 Hz, a dynamic brake is applied. At this time, the dynamic brake time and torque are the same as in dynamic brake under 3 Hz.

2) Full range dynamic brake

When a stop command is given to the inverter, direct current is instantly passed into the motor for a specified time. The brake time (DBT) is 8 times that under 3 Hz.

Internal command mode (operation mode 1)

The frequency command is set by internal VR 2 (see 5.1.6), and the external VR and control terminal 2 become invalid. All others are same as in external command mode. To vary the motor speed easily in S type without panel, short-circuit control terminals 5-6 or 6-7.

4-speed operation mode (operation mode 2)

By the operation of control terminals 8, 9 alone, the external frequency command and three built-in parameters, that is, four speeds, can be selected. In this case, it must be noted that the functions of control terminals 8, 9 and meaning of parameters [8], [C], [D] are different from those in the above operation modes 0, 1. Jogging and free-run stop functions are not available, but when either parameter DBT or DBT is set at the minimum to establish full range dynamic brake, free-run stop is caused by stop command.

[Priority of functions]
Dynamic brake < normal operation < jogging < free-run stop < trip

Examples

1. When operation command is given during dynamic brake, operation is started up immediately.

2. When free-run stop command is given during jogging, free-run stop is put into effect.

3. If operation command is given during free-run stop, operation is not effected.
4.2 Description of terminals

[Power terminals]

- SW1 and SW2 vary in function depending on the operation mode.
- In operation mode 0, the external VR1 becomes the frequency command dial.
- Trip signal turns on the transistor when tripping. Although this signal is completely isolated from other terminals, please note that the dielectric strength against controlling ground is DC 50 volts.

[Control terminals]

- Terminals 5, 7, 8, 9 are pulled up to +5 volts inside by means of 4.7 kΩ resistor so that control by contact or open collector output is possible.
- Do not touch the control terminals during operation or damage and malfunctions due to static electricity may occur.
[Table of control terminal functions]

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>External command mode (operation mode 0)</th>
<th>Internal command mode (operation mode 1)</th>
<th>4-speed operation mode (operation mode 2)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP1</td>
<td>Trip output (emitter)</td>
<td></td>
<td></td>
<td>Open collector output</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DC 24 V 50 mA</td>
</tr>
<tr>
<td>TP2</td>
<td>Trip output (collector)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DC 5 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Frequency setting input</td>
<td>Invalid *1</td>
<td>1st speed setting</td>
<td>0 to +5 V</td>
</tr>
<tr>
<td>3</td>
<td>Controlling ground</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Frequency meter output</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Normal rotation</td>
<td></td>
<td></td>
<td>Stopped if both are OFF or ON. But reset if both are ON for more than 0.1 sec when tripping.</td>
</tr>
<tr>
<td>6</td>
<td>Controlling ground</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Reverse rotation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Jog *3</td>
<td></td>
<td>4-speed selection</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Free-run *2 stop</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 Internal VR is the frequency command dial.

*2 Trip reset is not effected.

*3 By turning on JOG and turning on normal or reverse rotation, jogging is started. The jog command can be accepted during operation.

*4

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>1st speed</th>
<th>2nd speed</th>
<th>3rd speed</th>
<th>4th speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>9</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>

("ON" means to connect to terminal 6.)
4.3 Standard connection of external command mode
(operation mode 0)
(DV-505E-000S type)

[Operation pattern]
4.4 Standard connection of internal command mode
(operation mode 1)
(DV-505E-oooS type)

[Operation pattern]
4.5 Standard connection of 4-speed operation mode (operation mode 2)
(DV-505E-000S type)

[Operation pattern]

NOTE: 2nd, 3rd, 4th speeds can be set by parameter adjustment (see par. 5.2).
4.6 Standard connection with operation panel
(DV-505E-ooop type)
4.7 Cautions for connection.

Control circuit terminals

- For connection to control circuit terminals (1, 2, 3, etc.), use twisted wires or shielded wires.
- Separate the wires of control circuit from the power wires.
- Ground the shield of the shielded wire.

[Example]

Avoid miswiring to apply power source to motor output terminals (U, V, W or T1, T2, T3).

CHARGE lamp lights up, but the power transistor is broken the moment the operation switch is turned on.

Phase advancing capacitor

Remove the phase advancing capacitor of existing motor. Otherwise the inverter trips.

Use NFB at power source side.

Ground.

For connection to power terminals (R, S, T, U, V, W, E L1, L2, L3, T1, T2, T3), use solderless terminals with insulation coating.
Misconnections leading to breakdown

(1) Reverse connection of power source wires R, S, T or L1, L2, L3 and motor wires U, V, W or T1, T2, T3, or ground fault of U, V, W or T1, T2, T3.

(2) Application of more than DC 24 V, 50 mA to TP1, TP2 terminals, or application of voltage in reverse polarity.

(3) Application of voltage from outside to frequency command terminals 1 to 9, except No. 2.

(4) Application of voltage over 5 V to frequency command terminal 2.

(5) Short circuit of internal power source terminal 1 and controlling ground terminals 3, 6.
4.8 Operation

- Before starting operation, check the connections again.

- Although the operation can be started and stopped by the electromagnetic contactor provided at the inverter power source side, but since it shortens the service life of the inverter by frequent repetition of rush current when turning on the power, use the control terminals (5-6, or 6-7) for starting and stopping operation.

- The DV-50SE series does not contain overload protective function. Operate in the load condition so that the inverter output may be always within the rated current. If there is risk of exceeding the rated current even for a moment, install a thermal relay (TH-Ry).

- Setting of operation mode

 Determine the operation mode before turning on the power (resetting), and turn the rotary switch (RSW) to desired position of 0 to 2 depending on the operation mode, then turn on the power. After setting the parameter, return to the selected mode 0, 1 or 2.

 (1) If returned to a different operation mode, the operation mode changes automatically when resetting next time.

 (2) If the power is turned on or reset with the rotary switch kept at position 3 to F, the LED2 (green) flickers, and the inverter does not deliver output. In such a case, return the rotary switch to the specified operation mode, and turn on again to clear this state. While the LED2 (green) is flickering, the trip lamp LED3 (red) does not light, but the transistors for trip signal (TP1, TP2) become ON, and abnormality is noticed outside.
4.9 Closing and breaking at inverter output side

* Do not install electromagnetic contactor between inverter and motor and energize or de-energize it during inverter operation. On start up the inverter, speed is gradually increased from low frequency (1.5 Hz) so that the starting current does not exceed the rated current of the inverter. If the electromagnetic contactor is turned on during inverter operation, a large current flows, which may cause the inverter to trip.

Closing at output side

<table>
<thead>
<tr>
<th>State of inverter</th>
<th>While motor is running (free-run)</th>
<th>While motor is stopped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter running</td>
<td>× Closing inhibited (or it trips).</td>
<td>Δ Closing permitted (direct feed current should be inverter rated current × 150% or less).</td>
</tr>
<tr>
<td>Inverter stopped</td>
<td>Δ Closing permitted (but motor should be stopped before starting).</td>
<td>o Closing OK.</td>
</tr>
</tbody>
</table>

Breaking at output side

Breaking is possible, but the motor halts in free-run stop (brake is not applicable).
4.10 Selection of peripheral devices

1. Selection of no-fuse breaker, electromagnetic contactor, wire

<table>
<thead>
<tr>
<th>Inverter type</th>
<th>Applicable motor (kW)</th>
<th>No-fuse breaker Rated current</th>
<th>Electromagnetic contactor (Contact configuration)</th>
<th>Thermal relay (current adjusting range)</th>
<th>Wire (mm²) (Size according to current requirements)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DV-505E-400 5P</td>
<td>0.4</td>
<td>BBP3-5 (5 A)</td>
<td>BMF6-10-4-2 (4 a)</td>
<td>BMF9-04 (1.8-3.0 A)</td>
<td>2.0</td>
</tr>
<tr>
<td>DV-505E-750 5P</td>
<td>0.75</td>
<td>BBP3-10 (10 A)</td>
<td>BMF6-10-4-2 (4 a)</td>
<td>BMF9-07 (3-5 A)</td>
<td>2.0</td>
</tr>
</tbody>
</table>

NOTES: The motor wire refers to the distance of within 20 meters between inverter and motor. For longer distance, use wires of larger size.

2. Selection of instrument (Metering)

Since the primary side and secondary side voltages and currents of the inverter vary depending with the instrument being used, because higher harmonics are present. When measuring with an instrument for commercial line frequency, measure by using the instruments and circuits as shown below.

Examples of measuring positions and measuring instruments
3. Selection of relay

For the relays used on the control terminals 5, 6, 7, 8, 9 and other control circuit functions, use small signal type (minimum guaranteed current 1 mA or less) in order to prevent intermitting faulty contact. Since a current of only several microamperes flows in the control terminal 2 (frequency setting input), a twin contact or gold contact is necessary.

4. Selection of switch for control circuit

When using switch instead of relay, use one for small current in order to prevent faulty contact.

5. Selection of frequency command dial (VR)

Use enclosed variable resistor of 5 kΩ, B-characteristics, 1/4W or more.
5. ADJUSTMENT

The DV-505E control provides 3 modes of operation and include 12 different functional possibilities for adjustment and/or presetting (soft start time, carrier frequency, etc.). Each function and adjustment of the DV-505E can be determined and selected by the following methods:

5.1 Adjustment devices

1. Reset pushbutton switch (SW)
Depressing the Reset button while running directly resets the microprocessor, and the inverter will be in the free run stop mode. On releasing the button, the inverter will automatically restart and will accelerate to the original set speed.

PB switch (SW) is also used for the following:
- Inverter trip reset
- Inverter function select
- Inverter maximum frequency change

2. Switch DSW (dip switch)

<table>
<thead>
<tr>
<th>SW No.</th>
<th>Item</th>
<th>Function</th>
<th>To change</th>
<th>Adj. at factory</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Max. freq.</td>
<td>ON: 120 Hz</td>
<td>Only at resetting</td>
<td>60 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF: 60 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Dynamic braking torque</td>
<td>ON: Full freq. range</td>
<td>Anytime</td>
<td>3 Hz less</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF: 3 Hz or less</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If "No Braking Torque" is required, set either the Dynamic Brake Torque (BD1) or Dynamic Brake Time (DB1) to "0" (zero). (The DB1 and DBT adjustments will be explained later).

CAUTION! Do not operate switch DSW when the main power is applied as "electrostatic" interference may cause erroneous operations.
3. **RSW (Rotary switch)**

 The RSW switch is used to select the desired operation mode and inverter operation function.

4. **LED 2 (green lamp)**

 This LED will illuminate as each inverter function is selected. An undervoltage condition will be indicated by a blinking LED 2 (green light).

5. **LED 3 (red lamp)**

 In the event the inverter trips, the LED 3 (red lamp) will illuminate. At the time a trip occurs, the open collector signal which is interconnected to terminals TP1 and TP2 may also be used as a trip signal.

 During the trip phase, the motor runs freely. The method for reset of a trip condition is as follows:

 1. Turn off (disconnect power source), wait 10 seconds, then turn on (reconnect power source).

 2. Or press the reset pushbutton.

 3. Or short the both terminals (#5 for forward run command input and #7 for reverse run command input) to the ground terminal (#6) at the same time for more than 0.1 sec (this method is only effective when the inverter trips).

 NOTE: When changing operation mode, maximum frequency or resetting the inverter trip, one of the above three methods may be necessary. If the malfunction is caused by external noise and/or static electricity, use only methods (1) or (2).

6. **Potentiometer (VR2)**

 This potentiometer is used to adjust each function. The same potentiometer is also used for setting the output frequency of the inverter when operating in mode 1 (internal command mode).
5.2 Parameters and adjustment

1. Parameter types and functions

<table>
<thead>
<tr>
<th>RSW</th>
<th>Operation mode & selection for each Parameter</th>
<th>Adj. range *7</th>
<th>Adj. at factory</th>
<th>F meter indicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>External command mode (Mode 0)</td>
<td>Switching possible only at resetting</td>
<td>"0"</td>
<td>Output freq.</td>
</tr>
<tr>
<td>1</td>
<td>Internal command mode (Mode 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4 speeds operation mode (Mode 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

	Soft start (time)	0-7	5 sec	
	Soft start (magnification)	0.2, 0.5, 1, 2, 10, 20, 100, 200	x1	
	Soft down (time)	0-7	5 sec	
	Soft down (magnification)	0.2, 0.5, 1, 2, 10, 20, 100, 200	x1	
☆7	Carrier frequency	0-7	6	
8	JOG frequency	0-25 Hz	7(14) *1 Hz	
	(Determination for 2nd speed)	(0-max. freq.)		
9	Boost	*6		
A	Dynamic brake time (DBT)	0-2.5(20) sec	0.5(4) *2 sec	
	(Determination for 3rd speed)	*3		
	(Determination for 3rd speed)	*1		
B	Dynamic brake torque (DBI)	*6		
C	Upper limit freq. (Determination for 4th	0-max. freq.	5 Hz	
	speed)	*3		
	Lower limit frequency (Determination for 4th	0-max. freq.	30 Hz	
	speed)	*3		
	(Determination for 4th speed)	*1		
E	Frequency meter compensation	*5		
F	Not in use			

*1 () Shows when 4 speeds operation mode is selected.
*2 () Shows when SW No. 2 of DSW is set ON (Full frequency range, See 5.1, 2).
*3 When you set "Upper limit freq. < lower limit freq.", the limit function will not work.
*4☆-Marked parameters can be changed with 8 steps. We will call them as digital parameters. The other will be continuously changed and called as analog parameter.
*5 Frequency meter should be a 100 µA rating at full scale.
*6 Those parameters are adjusted properly at the factory before shipment. Please do not touch it unless specially needed.
*7 Turn VR2 to the right to increase the parameters.
(1) Acceleration/deceleration time

These time are one which are necessary to vary between 0 (zero) and maximum frequency of an inverters output at acceleration and/or deceleration. These time are adjustable separately.

Accel. time = Soft start time (parameter 3) × Soft start magnification (parameter 4) × max. freq./60

Decel. time = Soft down time (parameter 5) × Soft down magnification (parameter 6) × max. freq./60

[Quick reference of accel./decel. time] (Unit: second)

<table>
<thead>
<tr>
<th>Max freq.</th>
<th>Soft start/down time</th>
<th>Soft start/down magnification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>×0.2</td>
<td>×0.5</td>
</tr>
<tr>
<td>0</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Decel.</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>1.5</td>
</tr>
<tr>
<td>4</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>2.5</td>
</tr>
<tr>
<td>6</td>
<td>1.2</td>
<td>3.0</td>
</tr>
<tr>
<td>7</td>
<td>1.4</td>
<td>3.5</td>
</tr>
<tr>
<td>60 Hz</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Accel.</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Decel.</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0.8</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1.2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1.6</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>2.0</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>2.4</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>2.8</td>
<td>7</td>
</tr>
</tbody>
</table>

Above data is for accel./decel. operation by the operation switch (rocker switch) of the operation panel. On the other hand, because of the time lag caused by the internal circuit, accel./decel. time is lagged by 0.5 sec. if accel./decel. is commanded by the frequency commands. In this case, quicker accel./decel. than 0.5 sec. is not available.
2) Carrier frequency (Parameter 7)

The DV-505E uses a sine-coded PWM control system with a constant frequency carrier system. The virtue of this unique system provides motor operation that is both quiet and low in vibration. This feature insures that no harmful resonance is passed on to driven machinery. Increasing parameter 7 results in a higher carrier frequency.

3) Jogging frequency (Parameter 8)

This parameter is used to set jogging frequency when either external operating mode or internal operating mode is selected. When you select the 4 speeds operation mode, use parameter 8 for determination of the 2nd speed, as explained in the note below.

1) In the 4 speed operation mode, the 2nd speed is preset by parameter 8. This will automatically vary according to the maximum frequency setting by SW No. 1 of DSW.

ii) An example of the above note is as follows:

At factory, the jogging frequency has been adjusted at 7 Hz by parameter 8. However, when the inverter is operated in the 4 speeds mode and max. freq. is set at 60 Hz, the 2nd freq. becomes 14 Hz. If the max. freq. is 120 Hz, it becomes 28 Hz.

4) Boost (Parameter 9)

This function is to increase the inverter output voltage so as to increase the level of the motor torque in the lower frequency range. Parameter 9 for "boost" has been adjusted before shipment. Do not adjust parameter 9 unless absolutely necessary. Excessively high torque boost raises the motor's no load current, leading to the tripping of the inverter or rapid overheating of the motor.

![V/F pattern diagram]

- 27 -
(5) Dynamic braking time and torque (Parameter A, B)

Dynamic braking torque (motor current) and the braking time can be adjusted by these parameters. However, please note that the excessive long braking time and/or large braking torque may cause inverter tripping or overheating of the motor. If the SW No. 2 of DSW is set "ON" (full freq. range) braking time will be 8 times as long as the braking time when SW No. 2 is "OFF", (3 Hz or less).

(6) Upper/lower limit frequency (Parameter C-D)

DV-50SE offers the upper/lower limited function as shown below.

If you set those parameters in reverse, that is upper limit is set as lower than lower limit, those limit functions do not work.
(Before shipment these parameters C and D have been adjusted as "Upper limit < Lower limit" to invalidate these functions.) If lower limit frequency is set a 1 Hz or higher you cannot stop the motor by the potentiometer on the panel but you can stop it by the Forward/Reverse rocker switches. If lower limit frequency is set at 1 Hz or lower the lower limit frequency function will cease to be valid. At 4 speeds operation mode, the inverter loses both the upper and lower limit frequency functions. In this case, these parameters, C & D will be used for determining the 3rd speed and 4th speed respectively.

(7) Frequency meter compensation (Parameter E)

Frequency meter is calibrated by the parameter E. When you put a meter with "S" type (without panel type), please calibrate a frequency meter. A meter can be calibrated whenever the inverter is in operation or stop. In calibration, please set the needle of the meter at full scale point. The frequency meter must be the DC moving coil type having 100 μA rating at full scale.
2. How to adjust the parameters
(1) In case you have a frequency meter.

![Flowchart diagram]

- Start
 - Power check Charge lamp (LED1) on
 - Parameter selection by RSW
 - F. meter indicates present setting value
 - Will you change?
 - Yes
 - LED2 (green) off?
 - On
 - VR2 is being set at the present value
 - Off
 - Turn VR2 until LED2 turns on then the parameter can be changed.
 - Turn VR2 until the freq. meter indicates necessary value. In case of a digital parameter, the meter will move step by step and LED2 turns on and off synchronously with the meter movement. Please keep turning VR2 until LED2 turns on. In case of an analog parameter, the meter moves linearly and LED2 keeps turning on.
 - Will you adjust other parameters?
 - Yes
 - Change RSW back to the initial mode (0-2) which was shown when you put the main power on.
 - LED2 (green) Off
 - Finish
 - No

* In case of frequency meter calibration (Parameter E), set the meter at the full scale position.
In case you don't have a frequency meter.

1. Power check
 Charge lamp (LED1) on

2. Parameter selection by RSW

3. LED2 (green) off?
 - On
 VR2 is being set at the present value
 - Off
 Turn VR2 until LED2 turns on. Memory the present value of parameter from the position of dial of VR2 (in case of digital parameter total rotatable angle of VR2 will be divided to 8 for each digit). Then the parameter can be changed.

4. Will you change?
 - Yes
 Turn VR2 until you get necessary value. In case of a digital parameter, turn VR2 to clockwise, starting from the most counterclockwise end, while counting number of times of ON and OFF of LED2 (0, 1,7). Stop VR2 wherever LED2 keeps turning on. Above number shows the value of parameter. In case of an analog parameter LED2 keeps turning on. Please tune VR2 by your eye measure wherever you want.
 - No
 Change RSW back to the initial mode (0-2) which was shown when you put the main power on.

Finish
(3) Soft start time adjustment
(Example 1: When you have a frequency meter)

a. To change the soft start time from 5 sec. which has been set at factory to 2 sec.

1. Set RSW at [3]. Then the frequency meter will indicate 5 as a present valve which has been set at factory.

2. a. In the case where VR2 has been set at the CCW position: turn VR2 slowly to C.W. and find a position where LED2 (green) turns on. The position of VR2 is around 6/8 of full scale of VR2 as shown right.

 b. In the case where VR2 has been set at the CW position: turn VR2 slowly to C.C.W., find a position where LED2 (green) turns on. The positions around 2/8 as shown right.

3. Turn VR2 C.C.W. At this time, the freq. meter follows the VR2 movement proportionally. When LED2 flashes three times and the meter points to 2, stop VR2 at that position.

4. When finished with the adjusting procedure, please return RSW to [0] or, change it to another position to adjust another parameter.

The meter indicates 0 (zero) output frequency (In static state)
1) Soft start time adjustment

(Example 2: Without a frequency meter)

When the inverter was shipped from the factory, soft start time was adjusted at 5 seconds. Now you want to change it to 2 seconds. Operation mode to be external command mode.

1. Set RSW at [3]. Turn VR2 slowly to the right or left to find a position where LED2 (green) turns on. In this case, you must find the VR2 stops around 2/8 position of the full scale range from the right.

2. Next, turn the VR2 fully to the left. Then, turn VR2 backward to the right slowly counting number of turning on and off of LED2 (green). If it turns off two times and turn on, it is the very position of [2].

3. To finish the adjusting procedure, return RSW to the position [0] or change it to other parameter.

Note: Please do not adjust acceleration/deceleration time while the inverter is being accelerated or decelerated. In the above process [2], when VR2 is turned fully to the left, the inverter may trip because of too short acceleration time.

5) Cautions

1. The parameters can be adjusted at both of operation and stop of an inverter. However, if the main power is not impressed to an inverter, its parameter can not be adjusted. Please confirm that the charge lamp LED1 (red) is illuminating before you start adjusting a parameter. When you operate an inverter at operation mode 1 (inner command mode), please adjust the parameters while a motor does not rotate.

2. When you use a frequency meter with "S" type (without pannel type) of inverter, please adjust the meter first.

3. From starting a parameter adjusting until finishing it, please do not cut the main power and do not reset the inverter. If an inverter tripped while adjusting a parameter, please return RSW to [0], [1] or [2] (operation modes) and reset the inverter. In this case, you need to start adjusting the parameter again.
4 A frequency meter shows the digits 0 ~ 7. Those digits represent the digital parameters. However as to soft start magnification and soft down magnification, please read those digit as shown in the following table.

<table>
<thead>
<tr>
<th>Digit</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnification</td>
<td>×0.2</td>
<td>×0.5</td>
<td>×1</td>
<td>×2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>×10</td>
<td>×20</td>
<td>×100</td>
<td>×200</td>
</tr>
</tbody>
</table>

5 As to the analog parameters:
For parameter 8, C, D and E, please read the frequency meter directly. (In this case reading value of the meter is subject to a predetermined max. frequency)
For parameter 9, A and B, please do not change because those were adjusted properly when the inverte was shipped out of the factory.
6. PROTECTIVE FUNCTIONS

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overcurrent shut-off</td>
<td>By detecting the output current of converter, the protective circuit is actuated and trips at an overcurrent of 160 to 200% or more of the rated output current of inverter.</td>
</tr>
<tr>
<td>Regenerative overvoltage shut-off</td>
<td>The protective circuit is actuated and trips at an excessive output voltage of converter due to regenerative energy. This occurs when the setting of deceleration time is extremely short and the regenerative overvoltage shut-off circuit is put in action. To over come nuisance tripping set the deceleration time slightly longer (continuous lighting of red trip lamp LED3).</td>
</tr>
<tr>
<td>Momentary power failure protection</td>
<td>If a momentary power failure of more than 15 msec occurs, the protective function is available to avoid malfunction, and the output is delivered gradually after recovery of momentary power failure. If the power failure is shorter than 15 msec, the control circuit is designed to operate normally, thanks to the protective circuit.</td>
</tr>
<tr>
<td>Undervoltage protection</td>
<td>In the supply voltage drops (below 170 volts), the undervoltage protection lamp LEDs (green) flickers, and the motor is set in free-run state.</td>
</tr>
</tbody>
</table>

NOTE: The trip signal is not held when reset or in the event of power failure.
7. TROUBLES

7.1 Trip

- The DV-505E series incorporates protective functions to prevent breakdown of the inverter (see Chapter 6), and the inverter is protected by tripping.

- If tripping, therefore, check for cause and remedy it.

- Trip is indicated by the red lamp LED3 on the printed board.

7.2 Judgement of abnormality

- If the inverter trips upon start-up, or the motor does not run although the inverter has not tripped, check for abnormality of inverter.

[Checking method]

* Detach all connections but power source (R, S, T or L1, L2, L3) and frequency command (1, 2, 3).

(1) Make sure the supply voltage is 207 to 253 volts.

(2) Check frequency command (DC 0 to 5 volts) between control terminals 2 and 3. (Or check voltage between 2 and 3 by detaching the VR.)

(3) Connect voltmeters (or circuit testers) between main circuit terminals U-V, V-W, and W-U or T1-T2, T2-T3, and T3-T1.

(4) Short-circuit either control terminals 5-6 or 6-7 securely (faulty contact may be also considered in the case of switch).

(5) Vary the specified voltage at control terminal 2 within permissible range (DC 0 to 5 volts), and make sure voltage is delivered normally in all three phases of U-V, V-W and W-U or T1-T2, T2-T3, and T3-T1.

Delivered ... the inverter is probably normal.

Not delivered ... the inverter is defective.

NOTE: The voltage of output (U, V, W or T1, T2, T3) side varies with the measuring instrument (for details see 4.10-2).
7.3 Trouble due to insufficient capacity of inverter tripping

When the motor is driven by inverter, since a starting current cannot be passed into the motor different from the case of commercial power source (the inverter capacity and motor capacity are identical), it may lead to a trouble.

(1) If the opposite machine is a cam or crank mechanism, the torque fluctuations are extremely large within one revolution, and an excessive peak current that cannot be measured by an ordinary ammeter may flow to cause the inverter to trip.

 Countermeasures: To increase the inverter capacity.
 To increase the inertia of the mechanism.

(2) In the case of electromagnetic clutch motor:

 When the load is turned on or off by the clutch while the motor is running continuously, a peak current flows when the clutch is turned on as experienced in (1), and the inverter trips.

 Countermeasure: To increase the inverter capacity.

7.4 Reset after malfunction of inverter

If an excessive noise or static electricity is applied to the inverter, the following malfunctions may occur.

(1) The trip lamp LED3 (red) flickers and the inverter trips.

(2) The motor does not stop, or external command is not accepted.
 In such cases, press the reset switch, or once turn off the power source, turn it on again after 10 seconds to reset.
8. OPTIONS

Frequency setting dial (DV-OP007)

Frequency meter (DV-OP020)
Noise filter (DV-OP016-5)

<table>
<thead>
<tr>
<th>Option part No.</th>
<th>Applicable motor</th>
<th>Allowable current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DV-OP016-5</td>
<td>0.4 kW</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0.75 kW</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Frequency setting dial (DV-OP007) is same as that in DV-503 series.
2. Dimensions are subject to change. For use in design, ask us for firm dimensions.
3. Frequency meter and operation panel for DV-503E cannot be used.
[CHECK SHEET]

Enter the results of adjustment of parameters and other conditions.

<table>
<thead>
<tr>
<th>Item</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum frequency</td>
<td>60 Hz</td>
</tr>
<tr>
<td>Dynamic brake</td>
<td>Under 3 Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Op. mode</th>
<th>Ext./int. command</th>
<th>4-speed operation</th>
<th>Ext.</th>
<th>Int.</th>
<th>4-speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Soft start time</td>
<td></td>
<td></td>
<td></td>
<td>sec</td>
</tr>
<tr>
<td>4</td>
<td>Soft start magnification</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Soft down time</td>
<td></td>
<td></td>
<td></td>
<td>sec</td>
</tr>
<tr>
<td>6</td>
<td>Soft down magnification</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Carrier frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Jogging frequency</td>
<td>2nd speed setting</td>
<td></td>
<td></td>
<td>Hz</td>
</tr>
<tr>
<td>9</td>
<td>Boost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Dynamic brake time</td>
<td></td>
<td></td>
<td></td>
<td>sec</td>
</tr>
<tr>
<td>B</td>
<td>Dynamic brake torque</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Upper limit frequency</td>
<td>3rd speed setting</td>
<td></td>
<td></td>
<td>Hz</td>
</tr>
<tr>
<td>D</td>
<td>Lower limit frequency</td>
<td>4th speed setting</td>
<td></td>
<td></td>
<td>Hz</td>
</tr>
</tbody>
</table>
For your memo (when inquiring or requesting service)

<table>
<thead>
<tr>
<th>Date of purchase</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of dealer</td>
<td>Tel.</td>
</tr>
</tbody>
</table>

Matsushita Electric trading Co., Ltd.
C.P.O. box 288, Osaka, Japan
Tel. (06) 282-5477

Matsushita Electric of Canada Ltd.
5770 Ambler Drive Mississauga, Ontario L4W 2T3, Canada
Tel. (416) 524-5010

Panasonic Industrial Company
Division of Matsushita Electric Corporation of America
1 Panasonic Way Secaucus, New Jersey 07094, U.S.A.
Tel. (201) 349-5306
425 East Algonquin Road Arlington Heights, Illinois 60005 U.S.A.
Tel. (312) 961-4823
6550 Katella Avenue Cypress, California 90630, U.S.A.
Tel. (714) 895-7490
1825 Walnut Hill Lane P.O. Box 152025 Irving, Texas 75015, U.S.A.
Tel. (214) 257-0763 Ext. 260

Panasonic Industrial U.K. Ltd.
280-290 Bath Road Slough Berks SL16 5JG U.K.
Tel. (44) 753-73181

Panasonic Deutschland GmbH Munchen Sales Office
Sandstr. 3, 8000 Munchen 2 F.R. Germany
Tel. 08955-770199

Panasonic France S.A.
139-141 Avenue Charles De Gaulle 92521 Neuilly Cedex, France
Tel. (01) 747-1106

Sung Tien Mou Co., Ltd.
6th Floor, Tai Ping Y First Building No. 550, Sec. 4, Chung Hsiao
E. Rd., Taipei, Taiwan, R.O.C.
Tel. (02) 741-7500 ~ 11

Matsushita Electric Trading (S) Pte. Ltd.
6 Shenton Way #37-01 DBS Building, Singapore 0106, Singapore
Tel. (65) 223-7427

National Panasonic (Australia) Pty. Ltd.
155 Pacific Highway, Greenwich N.S.W. 2065, Australia
Tel. (02) 459-7301

Electric Motor Division.
Matsushita Electric Industrial Co., Ltd.
7-1-1 Morofuku, Daito-city, Osaka 574, Japan Phone:(0720)71-1212