New CEM-3

(Double-sided copper-clad) R-1786 (Single-sided copper-clad) R-1781

Epoxy resin copper-clad laminate using glass fabric and nonwoven glass fabric as base materials

Features

- Excellent tracking resistance (CTI value for CEM-3 materials:600) can realize integration with power supply circuits.
- ●Excellent in thickness accuracy.

 Variations in board thickness are ±0.05 mm. This thickness accuracy is approx. 3 times higher compared with the existing composite copper-clad laminate.
- Excellent in high frequency characteristics.
 Small dissipation factor and thickness variations can realize designed performance.
- Provides dimensional stability equivalent to that of glass epoxy (FR-4).
- ◆Reduces CO₂ emission amount in our manufacturing process to one-quarter by means of our unique manufacturing process. (Compared with our conventional FR-4)

Applications

●Liquid crystal television, PDP, PC peripheral equipment, air conditioner, plumbing equipment, power supply board, tuner, amusement machine, etc.

■Specifications (Assured values)

	Standard size	Nominal thickness		Thickness tolerance				Warpage, Twist	
				R-1786		R-1781		Single-sided	Double-sided
	$(Warp \times Fill)$			Copper foil 0.018mm	Copper foil 0.035mm	Copper foil 0.018mm	Copper foil 0.035mm	Sirigle-sided	Double-Sided
		0.8mm	⊢ T 11*	0.81±0.05mm	0.85 ± 0.05 mm	$0.80 \pm 0.05 mm$	0.82±0.05mm	≤10.0%	≤2.5%
	$1,020^{+3}_{-0} \times 1,025^{+5}_{-0}$ mm	1.0mm		1.00±0.05mm	1.04±0.05mm	$0.99 \pm 0.05 mm$	1.01±0.05mm	≦9.0%	≤2.5%
	$1,220^{+3}_{-0} \times 1,025^{+5}_{-0} \text{mm}$	1.2mm	thickness.	1.15±0.05mm	1.19±0.05mm	1.14±0.05mm	1.16±0.05mm	≤ 7.0%	≤2.5%
		1.6mm		1.52±0.05mm	1.56±0.05mm	$1.51 \pm 0.05 mm$	1.53±0.05mm	≤ 6.0%	≦2.0%

Note: When thickness is measured at 10 positions according to Section 5.3.3 in JIS C6481, thicknesses of at least 9 positions are within the tolerance range specified above. Thickness out of the tolerance range is within 125% of the above tolerance.

Note: For detail dimensions, please confer with us separately.

	General Properties		R-1786		
	Test item	Unit	Treatment conditions	Actual value	Guaranteed value
Volume resistivity		$M\Omega \cdot m$	C-96/20/65	1×10 ⁸	≥1×10 ⁶
		101 77 - 111	C-96/20/65+C-96/40/90	5×10 ⁷	≥1×10 ⁵
Surface resistance		ΜΩ	C-96/20/65	3×10 ⁸	≥1×10 ⁶
Sui	lace resistance	1V1 3 Z	C-96/20/65+C-96/40/90	1×10 ⁸	≥1×10 ⁵
Inc	ulation resistance	ΜΩ	C-96/20/65	5×10 ⁸	≥1×10 ⁶
IIIS	uiation resistance	IVI 2.2	C-96/20/65+D-2/100	1×10 ⁷	≥1×10 ⁴
Dia	lectric constant (1MHz)	_	C-96/20/65	4.5	≦5.5
Die	nectric constant (TMIn2)	_	C-96/20/65+D-24/23	4.5	≦5.8
Dic	sipation factor (1MHz)		C-96/20/65	0.015	≦0.030
סוט	Sipation (Tivinz)		C-96/20/65+D-24/23	0.015	≦0.035
Sol	der heat resistance (260°C)	second	A	≧120	≧60
gth	Copper foil : 0.018mm (18 μm)	NI /mm	A	1.47	≧1.08
strength			S ₄	1.47	≧1.08
el st	Copper foil : 0.035 mm $(35 \mu m)$	N/mm	A	1.82	≧1.40
Peel		1	S ₄	1.82	≧1.40
Hea	at resistance	_	A	240°C60minutes No blister	200°C60minutes No blister
Flex	tural strength (crosswise direction)	N/mm ²	A	280	≧225
Water absorption		%	E-24/50+D-24/23	0.08	≦0.25
Fla	mmability (UL method)	_	A and E-168/70	94V-0	94V-0
Alk	ali resistance	_	Immersion (3 minutes)	no abnormality	no abnormality
Pur	nching workability	_	A	Suitable temperature:25℃	_

Note : Test piece thickness is 1.6 mm.

Note: The above tests are in accordance with JIS C6481. However, flame resistance is tested in accordance with UL94, and punching workability is in accordance with our company's testing method.

■Characteristic graph (reference value)

■Time-dependent change of surface resistance (40°C、90%RH processing) ⟨Comb pattern circuit width: 0.64mm、Circuit interval: 1.3mm⟩

■Peel strength of copper foil

■Temperature characteristic of surface resistance ⟨Comb pattern circuit width: 0.64mm、Circuit interval: 1.3mm⟩

■Through hole reliability

● Test condition

Create test pieces by applying copper through hole processing on test patterns, give the following thermal shocks, and measure the number of cycles until disconnection occurs.

●Example

Number of cycles to break				
X 1	X 2	Хз	\overline{X}	
60	69	66	65	

■ Frequency characteristic of dielectric constant (IPC TM-650 2.5.5.9)

■Thermal expansion and contraction rates (Dilatometer method) ⟨150°C scale⟩

■ Frequency characteristic of dissipation factor (IPC TM-650 2.5.5.9)

■Thermal expansion and contraction rates (TMA method)

R-1786

■Tracking resistance (IEC method)(0.1% NH4CI) ⟨Electrode (platinum) interval⟩

■Inner wall roughness 〈60,000rpm 0.05mm/rev 3 ply〉

■ Dimensional variation ratio (plate thickness 1.6mm copper foil thickness 0.018mm)
Size: 305mm(X-axis)×280mm(Y-axis)/Span: 270mm(X-axis), 260mm(Y-axis)

■Punching characteristic (Punching temperature25°C)

Maximum dynamic shearing stress N / mm²	Maximum dynamic pull-out stress N / mm²		
161.7	46.1		

*Punching temperature is equal to the board's surface temperature.

■ Dimensional variation ratio(Processing steps plate thickness 1.6mm copper foil thickness 0.018mm) Size:305mm(X-axis)×280mm(Y-axis)/Span:270mm(X-axis), 260mm(Y-axis)

□ Drill wear resistance Drill ≠0.6mm U C35 Number of rotations 60,000rpm
Feed rate 0.035mm/rev Entry boards: Aluminum(0.15mm)
Backup board: Bakelite plate thickness:1.6mm Copper foil 0.018mm 3 ply

■ Hole diameter contraction after punching (Punching temperature: 25°C R-1581)

