
Panasonic INDUSTRY

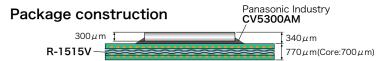
Laminate R-1515V* Laminate

R-1515K

*Low CTE glass cloth type

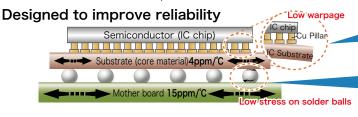
Low CTE IC substrate materials designed to improve reliability

Low CTE reduces warping and addresses a critical challenge with the IC packaging process. Flexibility and buffering features improve the reliability of the assembly process. Offers excellent thickness tolerances.


IC package warpage

Result 250 200 R-1515V 150 Low CTE glass cloth 100

Coplanarity (µm) 50 30 125 175 220 260 220 175 125 75 -50 -100 R-1515W -150 Normal glass cloth -200 Temperature (°C)


Sample

Core thickness	$700 \mu \text{mt} (12-12 \mu \text{m})$			
Package size	35 x 35mm (Die size 15 x 15mm)			

A wide range of thickness options

R-1515V (Low CTE glass cloth)	0.01 1.0
R-1515K (Normal glass cloth)	0.21~1.8mm

Low CTE

Low thermal expansion coefficient (CTE): close to that of silicon IC chips, which reduces warping and addresses a critical challenge with the IC chip packaging process.

Stress relaxation Combines flexibility and buffering features while retaining low thermal expansion properties through a stress relaxation technology, improving the reliability of the assembly process.

General properties

ltem		Test method	Condition	Unit	R-1515V Low CTE glass cloth	R-1515K Normal glass cloth	Conventional Normal glass cloth
Glass transition temp.(Tg)		DMA*2	А	°C	260	260	260
CTE x-axis	αΊ	TMA*2	А	ppm/°C	3-5	7	8-10
CTE y-axis					3-5	7	8-10
Dielectric constant(Dk)*1	1 GHz	IPC-TM-650 2.5.5.9	C-24/23/50	-	4.4	4.6	4.8
Dissipation factor(Df)*1					0.016	0.015	0.015
Elastic modulus*1		IPC-TM-650 2.4.4*3	25°C	GPa	30	27	33
			250°C		14	12	21

The sample thickness is $100\mu m$. *1 $700\mu m$ *2 Measurement in tensile mode. *3 The IPC standard determines the test sample size, methods and conditions, etc. but there is no formula for calculating the elastic modulus. Therefore, we quantified it according to JIS C 6481. Please see our website for Notes before you use

Our Halogen-free materials are based on JPCA-ES-01-2003 standard and others. The above data are typical values and not guaranteed values.