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1 Introduction

Current high-speed communication systems, whether wireless or wired, demand every electric compo-
nents to realize high performances in wider bandwidth at higher higher frequency band in order to
achieve still higher communication capacity and quality. Accurate dielectric constant (Dk) and loss
tangent (Df) from DC to millimeter wave band over 110 GHz now become the critical information for
circuit designers. In addition, by improving the estimation accuracy of device characteristics at the
design stage, the development cycle can be shortened, which is effective in reducing costs. Therefore,
the exact Dk and Df values are also quite important information for the designers in this regard as
well.

Under these circumstances, almost all companies supplying laminate materials used in printed cir-
cuit boards (PCBs) and integrated circuit packages provide their Dks and Dfs in various frequency
bands. However, Dks and Dfs, and their effective values of circuits, are extracted according to different
measurement methods, and they have different definitions. This situation sometimes can cause prob-
lems for circuit designers. For example, they are easily getting in lost in choosing which Dk and Df
is adequate for the accurate simulation that well reproducing the actual device performances at each
design stage, such as, transmission line design, selection of electronic materials, design of devices and
modules, etc.

To reduce these issues, in this white paper we will clarify the measurement methods and the
definitions for the Dk and Df over 10 GHz that we are providing, and will give precautions on their
usages. In particular, we will quantitatively discuss the definition of effective dielectric constant, the
difference in the effective dielectric constants arisen from the difference in its definition, and errors due
to the measurement methods.

2 Dk and Df measured with a balanced-type circular disk res-
onator method[1]

Dks and Dfs (hereinafter, represented as εBCDR
r and tan δBCDR, respectively) of laminate materials at

frequencies more the 10 GHz, published in our product catalogue or on our home page, are measured
with the Balanced-type Circular Disk Resonator (BCDR) method. The method is classified as one
of the resonator methods, and it can accurately measure εBCDR

r and tan δBCDR from resonant frequencies
and unload Qs for each resonant mode generated on the BCDR. Published εBCDR

r and tan δBCDR are of

1



at room temperature, however, those in the temperature range from −40 ◦C to +150 ◦C can be also
measured.

Electric fields in the BCDR are polarized perpendicular to the laminate sample under test, and
uniformly spreads within the resonator [2], therefore, εBCDR

r and tan δBCDR come to show closer to the
volume-averaged value of the dielectric constants and the loss tangents of the laminate components
(namely, resin, filler and glass fabrics), respectively, for the perpendicularly-polarizing electric fields.
Conversely, as it is clear from the polarization direction of the fields in the BCDR, the method is
essentially unable to measure the dielectric constant and the loss tangent in the direction parallel to
the laminate surface. In addition, as the BCDR must have the total of four copper surfaces (two GND
surfaces and two [front and back] of the internally mounted disk-type electrode), then conductivity
and surface roughness of the copper influence the extraction accuracy of tan δBCDR.

As understood from the measurement principle, only if the PCB under design is composed of
the transmission line that supports propagation modes with longitudinal polarization and a uniform
field distribution in the perpendicular direction to the surface ( ex., a circuit with substrate integrated
waveguides), εBCDR

r and tan δBCDR can be applied as the physical characteristic valued of the laminate, and
simulations executed at the design surely result in the good agreement with measurements. Conversely
speaking, if the propagation modes in the circuit has a non-uniform electric field distribution in the
thickness direction and have transversal polarization (such as a circuit consisting of microstrip lines
patterned on a laminate with glass fabric), we recommend the designer to consider εBCDR

r and tan δBCDR

as reference values, and to extract those from transmission properties of the line composing the circuit,
however, it takes a time.

3 Dk and Df extracted from the microstrip line

For designers developing planar circuits consisting of quasi-TEM transmission lines such as microstrip
lines (MSLs) and strip lines, we can also supplementary provide dielectric constant, εMSL

r , and loss
tangent, tan δMSL, extracted from the MSL with a characteristic impedance of 50 Ω (line width is
optimized at 79 GHz) constructed on the laminate under test (usually, dielectric thickness and copper
foil thickness are fixed at 4 mil and 18 µm, respectively), in addition to the above-mentioned εBCDR

r

and tan δBCDR. The purpose of publishing εMSL
r and tan δMSL is reducing the work of the designers to

extract them. The reason for setting the above extraction conditions is to measure the transmission
characteristics under conditions close to actual use, and to estimate εMSL

r and tan δMSL by using the
computational environment that will be applied to the design.

First, when measuring the transmission characteristics of the MSL, de-embedding is performed with
using a multiline TRL calibration method by NIST [3] to extract accurately the propagation properties
of the MSL section only. After acquiring S parameters from 1 to 110 GHz for the calibration standards
(multiple MSLs having different line length, short and open standards) by using a prober system, we
calculate a complex propagation constant γ from the phase of de-embedded S21 to find attenuation
constant, α, and wave number, keff , corresponding to the real and imaginary parts of γ, respectively.
Then, performing electromagnetic field analysis (finite element method is applied for this purpose)
to the cross-sectional shape of the measured MSL as a simulation model, we consider the dielectric
constant and the loss tangent that well reproduce measured keff and α at the extracted frequency as
εMSL
r and tan δMSL, respectively. Since this method is one of the transmission line method that does not
use a resonator, it has an advantage that the test frequency can be set freely, although the accuracy of
measurement is inferior to that of the BCDR method. In addition, the measured temperature defined
by the capacity of the prober can be set in the range of −40 ◦C to +200 ◦C. Note that with this method,
the loss due to the roughness of the copper foil also affects tan δMSL.

As described in the previous white paper “Why are two set of Dk and Df need for?,” the effective
dielectric constant measured directly from the MSL is generally the one not for the pure propagation
mode of the MSL (namely, quasi-TEM mode), but for a coupling mode between the quasi-TEM mode
and the lowest surface wave mode that can propagate on a dielectric substrate without metal strips
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[4]. However, when identifying Dks and Dfs by the simulation, it is usually difficult to take the effects
of the coupling mode into calculation 1 . If the electromagnetic mode propagating on the transmission
line is the same between the actual line and the simulation model, then the extracted εMSL

r are exactly
the same as the dielectric constant for the laminate. However, this assumption does not hold true in
our case, therefore, extracted εMSL

r contains the effect of the coupling mode and is considered as an
effective value. According to [4], the thicker the substrate is, and the higher the frequency is, the
more remarkable the effect becomes. The difference between εMSL

r and εBCDR
r becomes remarkable in

the frequency rage of approximately 70 GHz band or higher. Thus the effect of the coupling mode
is contained in εMSL

r , however, not in εBCDR
r . Therefore, if the circuit design is performed with a circuit

simulator that cannot treat the coupling mode, or that is not a full-wave analysis, using εMSL
r rather than

εBCDR
r can improve the design accuracy, because εMSL

r already contain the effect by the mode. Finally
note that there are some circuit simulators that adopt empirical formulae that contain the effect by
the coupling mode (the empirical formulae derived from the results by an full-wave analyses such as a
spectral domain method [5]). When using the simulators, using εBCDR

r rather than εMSL
r may give results

more consistent with reality.

4 Effective dielectric constant and effectiveness loss tangent
of a transmission line

4.1 What is the effective dielectric constant?

Do you know that there are two definitions for the “effective dielectric constant”? To explain this,
a uniform straight transmission line with the length of l is assumed, and It is assumed that the
characteristic impedance of the line exactly matches the impedance of the two ports connected to both
ends of the line, namely that impedance matching is completely realized. Under these assumptions,
the S-parameters of this line can be expressed as S11 = S22 = 0 and S21 = S∗

12 = eiγl. Here, γ is
called the complex propagation constant and can be divided into wave number k of the real part and
attenuation constant α of the imaginary part as γ ≡ k+ iα. When the wavelength of a sine wave with
the frequency of f that propagates on this transmission line is assumed to be λg, the wave number k is
defined as k ≡ 2π/λg, and the attenuation constant α is an amplitude attenuation, namely, a constant
representing energy dissipation.

Then, if we focus only on the propagation property, namely, eiγl, and ignore the detailed structure
of the line once, the electromagnetic wave propagating on the line can be considered to have effective
complex permittivity, ∗εeffr = ε′r

eff + iε′′r
eff, or effective complex refractive index, ∗neff, and to be equiv-

alent to a planar wave, eiγl, propagating through an isotropic dielectric body with ∗εeffr . With this
modeling, a dispersion relation, 2πf = ω = ck0 = (c/∗neff) γ (c is the speed of light and k0 is wave
number in vacuum) is obtained. In addition, since a relation ∗εeffr = (∗neff)2 is established, a relational
expression (γ/k0)

2 = ∗εeffr is obtained. From these relational expressions, it can be understood that
effective dielectric constant εeffr ≡ ε′r

eff and effective loss tangent tan δeff ≡ ε′′r
eff/ε′r

eff are given in the
following equations.

εeffr =
Re γ2

k02
(1)

tan δeff =
Im γ2

Re γ2
(2)

1When analyzing straight and uniform MSLs by electromagnetic simulation, it is common to create a simulation model
surrounded by a parallelepiped boundary with two ports and four perfect conductor walls to reduce computational costs.
If the boundary is set so as to be a cut-off waveguide in the simulation frequency range, there exists neither surface
wave modes nor the coupling mode. Therefore, εMSL

r and tan δMSL are optimized for quasi-TEM mode so as to reproduce
measured keff and α, but these are basically those of coupling mode.
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Figure 1: (Left) Frequency dependencies of the effective dielectric constants according to Definitions (1)
and (3) (denoted as “Def. eq(1)” and “Def. eq(3)”, respectively) calculated from S21 for a MSL after
de-embedding. (Right) Frequency dependencies of the effective loss tangent calculated by Equation
(2). It can be seen in the left figure that the values according to Definition (3) always show larger
values than those according to Definition (1). In order for the difference in effective dielectric constants
between the two definitions to be remarkable, the MSL must have a large effective loss tangent shown
in figure (Right).

As can be seen in Equation (1), α in addition to k is incorporated into the effective dielectric constant,
εeffr , according to this definition, since εeffr ∝ Re γ2 = k2 − α2.

As can be seen from the above derivation, Equation (1) is physically straightforward expression as
the definition of the effective dielectric constant, but the following definition which excludes α from
Equation (1) is commonly used, in order to simplify the discussion.

εeffr =
(Re γ)

2

k02
(3)

In the following, we adopt Equation (3) as the definition of the effective dielectric constant. For a low
loss transmission line, that is, α is sufficiently smaller than k, Equation (3) approximately coincides
with Equation (1). However, when α is sufficiently large compared with k, differences between the two
definitions become remarkable. The higher the frequency becomes, the more the effective dielectric
constant (1) tends to decrease compared with (3), because α for a common transmission line shows
the bigger values as the frequency become higher, and because of εeffr ∝ Re γ2 = k2 − α2. These
qualitative behaviors of the two definitions can be seen concretely from Figure 1. Figure 1 (Left) shows
the frequency dependencies of the effective dielectric constant in accordance with two definitions, and
theses are extracted from de-embedded S21 for a MSL, which patterned on the 4 mil thick substrate
and has large transmission losses. As can be seen from the figure, the values extracted by Definition
(1) are smaller than the values by Definition (3) at all frequencies. However, it should note that
the differences between the two effective dielectric constants become remarkable as shown in Figure 1
(Left), only when the effective loss tangent defined in Equation (2) becomes large as shown in Figure
1 (Right). Also, it can be seen in the figure that the difference between the two effective dielectric
constant becomes more remarkable at higher frequencies. This is because α commonly show larger
value at frequencies higher than millimeter wave band. Therefore, designers need to pay attention to
which definition is used to determine the effective dielectric constant especially in such frequency range.
More specifically, when determining the dielectric constant of a laminate under test from the effective
one measured by using the method described in Section 3, it is expected that extracted dielectric
constant shows greater than the actual value, if Definition (3) is used for calculating the effective one
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from the de-embedded S21.

4.2 Effective dielectric constant of the microstrip line

The effective dielectric constant εeffr for the microstrip line is commonly calculated using Equation
(3). As assumed as a prerequisite for the calculations in subsection 4.1, calculating the effective di-
electric constant according to Equation (3) is possible only if “ the impedance matching is completely
realized.” Therefore, the de-embedding method described in Section 3 is applied to satisfy this pre-
requisite. As denoted in Subsection 4.1, εeffr includes the propagation properties of the microstrip line
in addition to the properties of the materials constituting the laminate under test (resin, copper foil
and fillers); therefore, It cannot be used directly as a physical property of the laminate input to the
circuit/electromagnetic field simulator applied to the design. However, it can be used for an ideal
transmission line model directly parameterized by the effective dielectric constant if the designer can
be used a circuit simulator that supports the model. Then designers can perform more realistic and
accurate optimizations by inserting εeffr and α into the model.

5 On the measurement of the effective dielectric constant us-
ing the microstrip differential phase length method [6]

As the final topic, we would like to describe a method for measuring the effective dielectric constant,
“microstrip differential phase length method,” which is different from the one described in Section 4.
The measuring steps for this method are as follows: Firstly measuring two phases (which is define as
the argument of S21), φ0 and φ1, for two microstrip lines that have the identical line structure but
have different line lengths (difference in line length: ∆l). Next calculating the phase shift per unit
length θ = ∆φ/∆l from the phase difference in ∆φ = φ1 −φ0. At this step, ε

eff
r can be obtained from

Equation (3) since θ = Re γ.
Emphasizing here that the impedance matching is completely realized,” which is the repeat of what

was said in Section 4, so as that the relation θ = Re γ holds true. However, in actual measurement,
measurement is usually performed under conditions such that this precondition is not sufficiently
satisfied. We discuss below how so-called impedance mismatch affects the calculation of the effective
dielectric constant by Equation (3). For this aim, as similar to the previous section, we assume an
ideal transmission line with a length l and a propagation constant γ̄ (≡ −iγ).

To identify the phase part of S21 when impedance mismatch, S21 under Z0 ̸= Z is given as (4) in
accordance with a transmission line theory [7]. In the equation, Z is the characteristic impedance of
the line and Z0 is the impedance of the port.

S21 =
2ZZ0

(Z2 + Z0
2) sinh(γ̄l) + 2ZZ0 cosh(γ̄l)

(4)

In the following, to consider a situation where the impedances match is slightly broken, that is,
Z = (1 + ∆)Z0 (|∆| ≪ 1), is substituted into the above equation. Then, if we arrange Equation (4)
with an approximate calculation at |∆| ≪ 1, assuming a planar wave propagating in a medium with a
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frequency dispersion, namely, S21 ∝ exp(−γ̄eff l) = exp[ (ikeff − αeff) l ], we get Equation (5).

S21 =
e−γ̄l

1 + δe−γ̄l sinh(γ̄l)
, where δ ≡ ∆2

2(1 + ∆)

≈ [ 1− δe−γ̄l sinh(γ̄l) ] e−γ̄l

=

(
1− 1

2
δ

)(
1 +

δ

2− δ
e−2γ̄l

)
e−γ̄l

≈
(
1− 1

2
δ

)(
1 +

δ

2
e−2γ̄l

)
e−γ̄l

≈
(
1− 1

2
δ

)
exp

[
(δ/2) e−2γ̄l

]
e−γ̄l

=

(
1− 1

2
δ

)
exp

[
−γ̄l + (δ/2) e−2γ̄l

]
(5)

Then, the imaginary part is extracted from the phase part of Equation (5) and divided by the line
length l to find keff , and we get Equation (6).

keff =
1

l
Im

[
−γ̄l + (δ/2) e−2γ̄l

]
= k +

δ

2l
e−2αl sin(2kl) (6)

When the line propagation loss is small, in other words,e−2αl ≈ 1, then | e−2αl sin(2kl) | ≈ 1 because
of | sin(2kl)| ≤ 1. Thus, when it is measured under the condition where the impedance is unmatched,
it is inferred that keff contains an error, approximately ∆keff = δ/(2l) = ∆2/ [ 4l (1 + ∆) ] ≈ ∆2/(4l),
according to Equation (6). Note that since there is a relationship shown in Equation (3), the error of
the effective dielectric constant ∆εeffr is calculated as follows from the propagation relationship of the
error.

∆εeffr =

∣∣∣∣∂εeffr∂k
∣∣∣∣∆keff

=

∣∣∣∣∣ ∂∂k
(

k

k0

)2
∣∣∣∣∣∆keff

= 2
∆keff

k0

√
εeffr

=
c∆2

√
εeffr

4πfl
(7)

With Equation (7), the measurement error of the effective dielectric constant resulting from impedance
mismatch can be calculated. We assumed using our prober system and measured the MSL with l =
20 mm and εeffr ≈ 3 under the impedance mismatching condition where |S11| was approximately －
10 dB (since |S11| ≈ | (Z0 − Z)/(Z0 + Z) | ≈ ∆/ 2, then ∆ ≈ 0.63). We were able to obtain the
maximum frequency, f, where a 10 % or larger measurement error of the effective dielectric constant
(∆εeffr /εeffr ≥ 0.1) occurs, and f was approximately 2.7 GHz from Equation (7). As seen with this
result, it is found that the effect of the impedance mismatch appears in the measurement accuracy
of the effective dielectric constant in the frequency band of 10 GHz and under. Therefore, when the
effective dielectric constant at or under 10 GHz is measured using this method, it is expected to take
the measurement using a line as long as possible after having achieved impedance matching sufficiently
to improve the accuracy of the measurement.

To verify this result, we created an impedance mismatch condition with |S11| = −10 [dB] by
changing the impedance of the measurement port from 50 Ω using S parameter (S parameter under
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the impedance matching condition) after de-embedding measured from the MSL with 20 mm-length
to calculate the effective dielectric constant according to Definition (3). The results are shown in
Figure 2. As can be seen from the figure on the left, measurement errors that behave like a damped
oscillation occur in the effective dielectric constant under the impedance mismatch condition. This is
the effect of damping oscillation factor e−2αl sin(2kl) [second term on the right side of Equation (6)].
As mentioned above, the frequency where a 10 % error occurred was 2.7 GHz based on the calculation
using Equation (7). However, as can be seen in the figure on the right, it was in the neighborhood of
1.8 GHz in this calculation example where ∆εeffr /εeffr ≈ 0.1, showing good agreement in the range of
an approximation applied at the time of derivation. Based on the results thus far, the discussion in
this section was confirmed with a numerical experiment using the actual measurement results.

In summary, it is essential “to completely match the impedance between two ports connected to the
transmission line and its ends” to improve the accuracy of the measurement of the effective dielectric
constant. When this condition is not ensured, in other words, when it is in an impedance mismatch
state, the measurement error occurs in the low frequency band, but can be reduced by using a long
line.
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Figure 2: (Left) [Imp. matched] Frequency characteristics of the effective dielectric constant accord-
ing to Definition (3) derived from 20 mm-long MSL after de-embedding. [Imp. mismatched] Fre-
quency characteristics of the effective dielectric constant. Calculated from S parameter after the port
impedance was converted (Z0/Z ≈ 0.52) so that S parameter after de-embedding became |S11| = −10
[dB]. (Right) Frequency characteristic of ∆εeffr /εeffr . As can be seen in the figure on the left, mea-
surement errors that behave like a damped oscillation occur in the effective dielectric constant, when
there is an impedance mismatch. In addition, as can be seen in the figure on the right, the errors
become remarkable in lower frequency band. Note that, although the frequency where an error of 10
% occurred was 2.7 GHz based on the calculation using Equation (7), it was in the neighborhood of
1.8 GHz in this calculation example where ∆εeffr /εeffr ≈ 0.1.

6 Summary

In this technical report, we explained determination methods for the dielectric constant and loss tan-
gent in each frequency band that we provided and points of attention derived from the determination
methods that become necessary when those methods are used in circuit design. We have published
the dielectric constant and loss tangent that were determined mainly by a balanced-type circular disk
resonator method, but we can also supplement the dielectric constant and the loss tangent derived
from a microstrip line. In addition, the device is also capable of evaluating temperature dependency
of those values. Note that we also explained the necessity of determining the value to be applied as
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a substrate property value after having considered the distribution of the electromagnetic field in a
line propagation mode when a distribution constant circuit is designed under a circuit / electromag-
netic field analysis environment. In addition, we mentioned that there were two definitions for the
effective dielectric constant and clarified that the difference between the two became remarkable in
high frequency millimeter wave bands or above in a line with large loss. Furthermore, we explained
that impedance matching between the port and line is important to improve the accuracy of the mea-
surement of the effective dielectric constant, and quantitatively discussed that the measurement error
becomes remarkable at the low frequency band when this condition could not be ensured.
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