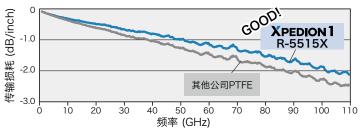
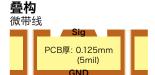
Panasonic INDUSTRY


XPEDION 1

芯板 半固化片 **R-5515X R-5410X**

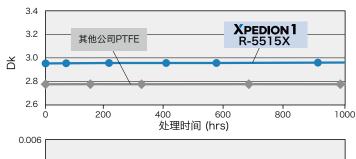
无卤素超低传输损耗多层基板材料

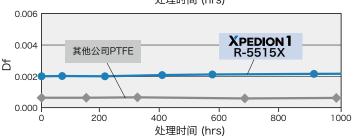

有助于提升高频天线信号,降低基板加工成本。 有助于实现天线层的多层化,提升高频基板的设计自由度。

传输损耗比较

传输损耗(@77GHz)

材料	传输损耗 (dB/inch)	Modeling Dk
XPEDION 1 R-5515X	-1.4	3.14
其他公司PTFE	-1.8	3.13


测定方法	2端口 S参数		
测定频率	10MHz-110GHz		
	TRL法		
校正方法	TRL法		


层1: 信号线层(线宽: 300μm、铜箔厚度: 24μm)

层2: GND平面层 (铜箔厚度: 24μm)

上述数据为本公司测量所得的代表值,非保证值。

高温环境长期稳定性 (Dk, Df)

・试验方法: 空腔谐振器法

・老化温度: 125℃ (无湿度控制)

・试验频率: 10GHz

上述数据为本公司测量所得的代表值,非保证值。

一般特性

项目		试验方法	条件	单位	XPEDION 1 R-5515X
玻璃态转化温度 (Tg	g)	DMA	А	°C	200
热膨胀系数 α1		IPC-TM-650 2.4.24	^	nnm/°C	50* 1
(Z-轴方向)	α2	IPC-11VI-650 2.4.24	A	ppm/°C	300*1
T288(含铜)		IPC-TM-650 2.4.24.1	А	分钟	>120*1
介电常数 (Dk)	14GHz	亚施利回森共振现法	C-24/23/50	_	3.06
介质损耗因数 (Df)	14602	平衡型圆盘共振器法			0.0021
铜箔剥离强度*2	1/2oz(18µm)	IPC-TM-650 2.4.8	А	kN/m	0.6

试验片厚度为0.13mm。

*1 试验片厚度为0.5mm。

*2 H-VLP2铜箔

在使用本产品时,请在我公司网站上确认注意事项。

关于板材厚度规格,请另行垂询。 本公司的无卤素材料基于的是JPCA-ES-01-2003等的定义。 上述数据为本公司测量所得的代表值,非保证值。