

Varistors (ZNR Surge Absorber) Type D

Performance Characteristics (Series E-S1)

Standard Test Condition Electrical measurements (initial/affeit tests) shall be conducted at temperature of 5 to 35 °C, relative humidity of maximum 85 %. The voltage between two terminals with the specified measuring current 1 mA DC applied is called V ₁ or V _{1,mx} . The measurement shall be made as fast as possible to avoid heat affection. The maximum sinusoidal RMS voltage or maximum DC voltage that can be applied continuously, (max. 125 °C) The maximum voltage between two terminals with the specified standard impulse current (8/20 µs) illustrated below applied. To meet the specified value.	Characteristics			Test Methods/Description	Specifications		
Varistor Voltage DC applied is called V₁ or V₁mo. The measurement shall be made as fast as possible to avoid heat affection. The maximum sinusoidal RMS voltage or maximum DC voltage that can be applied continuously. (max. 125 °C) The maximum voltage between two terminals with the specified standard impulse current (8/20 µs) illustrated below applied. Rated Power	Standard Test Condition				_		
Allowable Voltage The maximum voltage between two terminals with the specified standard impulse current (8/20 µs) illustrated below applied. To meet the specified value. To meet the specified value. To meet the specified value. The power that can be applied in the specified ambient temperature. The maximum energy within the varistor voltage change of ±10 % when a single impulse current of 2 ms or 10/1000 µs is applied. The maximum current within the varistor voltage change of ±10 % when a single impulse current of 8/20 µs is applied two times with an interval of 5 minutes. (at max. 125 °C) The maximum current within the varistor voltage change of ±10 % with a single standard impulse current of 8/20 µs is applied (at max. 125 °C) The maximum current within the varistor voltage change of ±10 % with a single standard impulse current of 8/20 µs is applied (at max. 125 °C) The maximum current within the varistor voltage change of ±10 % with a single standard impulse current of 8/20 µs is applied (at max. 125 °C) The maximum current within the varistor voltage change of ±10 % with a single standard impulse current of 8/20 µs is applied (at max. 125 °C) Vi ma at 125 °C × 100 100(%/°C) Vi ma at 25 °C × 100 100(%/°C) Vi ma at 25 °C × 100 100(%/°C) Vi maximum current within the varistor voltage change of ±10 % with a single standard impulse current of 8/20 µs is applied two times with an interval of 5 minutes. (at max. 125 °C) The maximum current within the varistor voltage change of ±10 % with a single standard impulse current of 8/20 µs is applied two times with an interval of 5 minutes. (at max. 125 °C) The maximum current within the varistor voltage change of ±10 % with a single standard impulse current of 8/20 µs is applied two times with an interval of 5 minutes. (at max. 125 °C) The maximum current within the varistor voltage change of ±10 % with a single standard impulse current of 8/20 µs is applied two times with an interval of 5 minutes. (at max. 125 °C) The maximum current within the varist		Varistor Voltage		DC applied is called V_1 or V_{1mA} . The measurement shall be made as fast as			
Clamping Voltage Rated Power The power that can be applied in the specified ambient temperature. Maximum Energy The maximum energy within the varistor voltage change of ±10 % when a single impulse current of 2 ms or 10/1000 us is applied. The maximum current within the varistor voltage change of ±10 % when a single impulse current of 8/20 µs is applied two times with an interval of 5 minutes. (at max. 125 °C) The maximum current within the varistor voltage change of ±10 % with a single standard impulse current of 8/20 µs is applied. (at max. 125 °C) The maximum current within the varistor voltage change of ±10 % with a single standard impulse current of 8/20 µs is applied. (at max. 125 °C) The maximum current within the varistor voltage change of ±10 % with a single standard impulse current of 8/20 µs is applied. (at max. 125 °C) The maximum current within the varistor voltage change of ±10 % with a single standard impulse current of 8/20 µs is applied. (at max. 125 °C) The maximum current within the varistor voltage change of ±10 % with a single standard impulse current of 8/20 µs is applied. (at max. 125 °C) The maximum current within the varistor voltage change of ±10 % with a single standard impulse current of 8/20 µs is applied. (at max. 125 °C) The maximum current within the varistor voltage change of ±10 % with a single standard impulse current of 8/20 µs is applied to 0.000 for 0.000 %°C of the maximum current within the varistor voltage change of ±10 % with a single standard impulse current of 8/20 µs is applied to 0.000 for 0.000 %°C of the maximum current within the varistor voltage change of ±10 % with a single standard impulse current of 8/20 µs is applied to 0.000 for 0.000 %°C of the maximum current within the varistor voltage change of ±10 % with a single standard impulse current of 8/20 µs is applied to 0.000 for 0.000 %°C of the maximum current within the varistor voltage change of ±10 % with a single standard impulse current of 8/20 µs is applied to 0.000 for 0.000 %°C of the max	Electrical						
Rated Power The power that can be applied in the specified ambient temperature. Maximum Energy Maximum Peak Current (Withstanding Current) The maximum current within the varistor voltage change of ±10 % when a standard impulse current of 8/20 µs is applied two times with an interval of 5 minutes. (at max. 125 °C) The maximum current within the varistor voltage change of ±10 % with a standard impulse current of 8/20 µs is applied. (at max. 125 °C) The maximum current within the varistor voltage change of ±10 % with a single standard impulse current of 8/20 µs is applied. (at max. 125 °C) The maximum current within the varistor voltage change of ±10 % with a single standard impulse current of 8/20 µs is applied. (at max. 125 °C) The maximum current within the varistor voltage change of ±10 % with a single standard impulse current of 8/20 µs is applied. (at max. 125 °C) The maximum current within the varistor voltage change of ±10 % with a single standard impulse current of 8/20 µs is applied. (at max. 125 °C) V1 mA at 125 °C × 100 100%/°C) Capacitance Capacitance Shall be measured at 1 kHz ±10 %, 1 Vrms max. (1 MHz ±10 % below 100 pF), 0 V bias and 20±2 °C. Withstanding Voltage (Body Insulation) The change of VC shall be measured after the impulse current listed below is applied 10000 or 1000000 times continuously with the interval of 10 seconds at room temperature. Item Impulse Life(I) Impulse Life(II) Times ×10⁴ Times ×10⁵ Times AVI mA/VI mA ≤ 0 to +20%							
Maximum Energy The maximum energy within the varistor voltage change of ±10 % when a single impulse current of 2 ms or 10/1000 µs is applied. The maximum current within the varistor voltage change of ±10 % when a standard impulse current of 8/20 µs is applied two times with an interval of 5 minutes. (at max. 125 °C) The maximum current within the varistor voltage change of ±10 % with a single standard impulse current of 8/20 µs is applied. (at max. 125 °C) Temperature Coefficient of Varistor Voltage Capacitance Capacitance Capacitance Capacitance Capacitance shall be measured at 1 kHz ±10 %, 1 Vrms max. (1 MHz ±10 % below 100 pF), 0 V bias and 20±2 °C. Withstanding Voltage (Body Insulation) AC 1500 Vrms shall be applied between both terminals of the specimen connected together and metal foil closely wrapped round its body for 1 minute. The change of VC shall be measured after the impulse current listed below is applied 10000 or 100000 times continuously with the interval of 10 seconds at room temperature. Item Impulse Life(I) Impulse Life(II) Times ×10 ⁴ Times ×10 ⁵ Times Part No. Current Impulse Current ERZE11A201S1 to ERZE11A112S1 200 A (8/20 µs) 110 A (8/20 µs) ΔV1 ma/V1 mA ≤ 0 to +20%		Clamping Voltage		90 (%) 10 0 0 8 US 1 Time			
Single impulse current of 2 ms or 10/1000 μs is applied. Maximum Peak Current (Withstanding Surge Urrent) 1 time 2 times 2 times 2 times 3 tandard impulse current of 8/20 μs is applied two times with an interval of 5 minutes. (at max. 125 °C) 1 time 3 tandard impulse current of 8/20 μs is applied two times with an interval of 5 minutes. (at max. 125 °C) 1 time 3 tandard impulse current of 8/20 μs is applied. (at max. 125 °C) 1 time 3 tandard impulse current of 8/20 μs is applied. (at max. 125 °C) 1 time 2 times 3 tandard impulse current of 8/20 μs is applied. (at max. 125 °C) 2 tandard impulse current of 8/20 μs is applied. (at max. 125 °C) 2 tandard impulse current of 8/20 μs is applied. (at max. 125 °C) 2 tandard impulse current of 8/20 μs is applied. (at max. 125 °C) 2 tandard impulse current of 8/20 μs is applied. (at max. 125 °C) 2 tandard impulse current of 8/20 μs is applied. (at max. 125 °C) 2 tandard impulse current of 8/20 μs is applied. (at max. 125 °C) 2 tandard impulse current impulse tandard tandard tandard tandard tandard tandard tandard tandard tandard ta		Rated Power		The power that can be applied in the specified ambient temperature.			
Maximum Peak Current of S/20 μs is applied two times with an interval of 5 minutes. (at max. 125 °C) 1 time Current) 1 time Temperature Coefficient of Varistor Voltage Capacitance Capacitance Shall be measured at 1 kHz ±10 %, 1 Vrms max. (1 MHz ±10 % below 100 pF), 0 V bias and 20±2 °C. Withstanding Voltage (Body Insulation) AC 1500 Vrms shall be applied between both terminals of the specimen connected together and metal foil closely wrapped round its body for 1 minute. The change of VC shall be measured after the impulse current listed below is applied 10000 or 100000 times continuously with the interval of 10 seconds at room temperature. Item Impulse Life(I) Impulse Life(I) Times ×10⁴ Times ×10⁵ Times Part No. Current Impulse Current ERZE11A201S1 to ERZE11A112S1 200 A (8/20 μs) 110 A (8/20 μs) ΔV1 mA/V1 mA ≤ 0 to +20%		iviavimi im Energy i		single impulse current of 2 ms or 10/1000 µs is applied.			
Temperature Coefficient of Varistor Voltage $V_{1 \text{ mA}}$ at $125 ^{\circ}\text{C} - V_{1 \text{ mA}}$ at $25 ^{\circ}\text{C}$ $\times \frac{1}{100} 100 (\%/^{\circ}\text{C})$ $0 \text{ to } -0.05 \%/^{\circ}\text{C} \text{ rows}$ $V_{1 \text{ mA}} \text{ at } 25 ^{\circ}\text{C}$ $V_{2 $		Peak Current	2 times	standard impulse current of 8/20 µs is applied two times with an interval of 5			
Temperature Coefficient of Varistor Voltage $V_{1 \text{ mA}}$ at $125 ^{\circ}\text{C} - V_{1 \text{ mA}}$ at $25 ^{\circ}\text{C}$ $\times \frac{1}{100} 100 (\%/^{\circ}\text{C})$ $0 \text{ to } -0.05 \%/^{\circ}\text{C} \text{ rows}$ $V_{1 \text{ mA}} \text{ at } 25 ^{\circ}\text{C}$ $V_{2 $			1 time				
Capacitance (1 MHz ±10 % below 100 pF), 0 V bias and 20±2 °C. specified value. Withstanding Voltage (Body Insulation) AC 1500 Vrms shall be applied between both terminals of the specimen connected together and metal foil closely wrapped round its body for 1 minute. No breakdown The change of VC shall be measured after the impulse current listed below is applied 10000 or 100000 times continuously with the interval of 10 seconds at room temperature. Item Impulse Life(I) Impulse Life(I) Times ×10 ⁴ Times ×10 ⁵ Times Part No. Current Impulse Current ERZE11A201S1 to ERZE11A112S1 200 A (8/20 μs) 110 A (8/20 μs) ΔV1 ma/V1 mA ≤ 0 to +20%		Coefficient of Varistor		$\frac{\text{V1 mA at } 125 \text{ °C-V1 mA at } 25 \text{ °C}}{\text{V1 mA at } 25 \text{ °C}} \times \frac{1}{100} 100(\%/\text{°C})$	0 to -0.05 %/ ℃ max.		
Voltage (Body Insulation) AC 1500 Vrms shall be applied between both terminals of the specimen connected together and metal foil closely wrapped round its body for 1 minute. The change of VC shall be measured after the impulse current listed below is applied 10000 or 100000 times continuously with the interval of 10 seconds at room temperature. Item Impulse Life(I) Impulse Life(I) Times $\times 10^4$ Times $\times 10^5$ Times Part No. ERZE11A201S1 to ERZE11A112S1 200 A (8/20 μ s) 110 A (8/20 μ s) $\Delta V_{1 \text{ mA}}/V_{1 \text{ mA}} \leq 0$ 0 to +20%		Capacitance		l ·			
applied 10000 or 100000 times continuously with the interval of 10 seconds at room temperature.		Voltage		···	No breakdown		
Times $\times 10^4$ Times $\times 10^5$ Times Part No. Current Impulse Current ERZE11A201S1 to ERZE11A112S1 200 A (8/20 μ s) 110 A (8/20 μ s) $\Delta V_1 \text{ mA/V}_1 \text{ mA} \leq 0 \text{ to } +20\%$		Impulse Life		applied 10000 or 100000 times continuously with the interval of 10 seconds at			
Impulse Life Part No. Current Impulse Current ERZE11A201S1 to ERZE11A112S1 200 A (8/20 μ s) 110 A (8/20 μ s) $\Delta V_{1 \text{ mA}}/V_{1 \text{ mA}} \le 0 \text{ to } +20\%$				Item Impulse Life(I) Impulse Life(II)			
Impulse Life				Times ×10 ⁴ Times ×10 ⁵ Times			
Impulse Life				Part No. Current Impulse Current	ΔV1 mA/V1 mA ≦		
ERZE14A201S1 to ERZE14A112S1 250 A (8/20 μs) 120 A (8/20 μs)				ERZE11A201S1 to ERZE11A112S1 200 A (8/20 μs) 110 A (8/20 μs)	· · · · · · · · · · · · · · · · · · ·		
				ERZE14A201S1 to ERZE14A112S1 250 A (8/20 μs) 120 A (8/20 μs)			

Performance Characteristics (Series E-S1)

	Characteristics		Test Met	hods/Descrip	otion	Specifications			
Mechanical	Robustness of Terminations (Tensile)	for 10 seconds, Term	the terminal shall be inal diameter mm, ø0.8 mm		w and keeping the unit fixed amined for any damage.				
	Robustness of Terminations (Bending)	below shall be a bent by 90 ° in back to the orig examined. Term	e secured with its te applied in the axial done direction, then so inal position. The da inal diameter mm, ø0.8 mm mm	No remarkable mechanical damage					
	Vibration	After repeadly a double amplitude 55 Hz to 10 Hz) Thereafter, the							
	Solderability	After dipping th a soldering bath examined.	Approximately 95 % of the termainals shall be covered with new solder uniformly.						
	Resistance to Soldering Heat	After each lead of 260±5 °C to shielding board at room temper V _{CmA} and mecha	$\Delta V_{1 \text{ mA}}/V_{1 \text{ mA}} \le \pm 5 \%$						
	Temperature Storage/Dry	The specimen s bath without loa for 1 to 2 hours	$\Delta V_{1 \text{ mA}}/V_{1 \text{ mA}} \le \pm 5 \%$						
	Heat	The specimen s without load and to 2 hours. The	$\Delta V_{1 \text{ mA}}/V_{1 \text{ mA}} \le \pm 5 \%$						
		The temperatur stored at room of V _{CmA} and med							
	Temperature	Step	Temperature	e (°C)	Period (minutes)	$\Delta V_1 \text{ mA/V}_1 \text{ mA} \leq \pm 5 \%$			
ntal	Cycle	1	-40±3		30±3	No remarkable			
Environmental		2	Room temper	rature	15±3	mechanical damage			
iron		3	125±2	_	30±3				
Env		4	Room temper	rature	15±3				
	High Temperature Load/Dry Heat Load	After being cont for 1000 hours, humidity for 1 t	-ΔV1 mA/V1 mA ≤ ±10 %						
	Damp Heat Load/ Humidity Load	The specimen s Maximum Allow temperature an V _{CmA} shall be m							
	Low Temperature Storage/Cold	The specimen s then stored at r Thereafter, the	$\Delta V_{1 \text{ mA}}/V_{1 \text{ mA}} \leq \pm 5 \%$						