PRODUCT INFORMATION SHEET

Lead-acid battery is not a target product for SDS (safety data sheet).
This sheet is intended to be issued in order to provide "reference information" to ensure the safe handling of the product.

1. Chemical Product and Company Identification

Product name : Valve Regulated Lead Acid Battery
 (LC and UP Series)
Brand : Panasonic
Information on company
Company name : Panasonic Storage Battery (Shenyang) Co., Ltd.
Relevant dept. : Product Engineering Group
Contact : Huyajie
Phone number : 86-24-62766226
E-mail Address : huyajie@cn.panasonic.com

2. Hazards Identification

GHS classification
Physical and chemical hazards : Not applicable
Health hazards : Not applicable
Environmental hazards : Not applicable

GHS label elements:
Pictogram : None
Signal words : None
Hazard statements : None
Precautionary statement : None
Other risks/hazards : No information

3. Composition/Information on Ingredients

Information on composition and ingredients:

<table>
<thead>
<tr>
<th>NO.</th>
<th>Chemical name or common name</th>
<th>Component part</th>
<th>Content rate (mass ratio)</th>
<th>Chemical formula</th>
<th>CAS no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lead</td>
<td>Terminal, electrode plate</td>
<td>55～80%</td>
<td>Pb</td>
<td>7439-92-1</td>
</tr>
<tr>
<td>2</td>
<td>Lead dioxide</td>
<td>Electrode plate</td>
<td></td>
<td>PbO₂</td>
<td>1309-60-0</td>
</tr>
<tr>
<td>3</td>
<td>Lead sulfate</td>
<td>Electrode plate</td>
<td></td>
<td>PbSO₄</td>
<td>7446-14-2</td>
</tr>
<tr>
<td>4</td>
<td>Dilute sulfuric acid</td>
<td>Electrolyte</td>
<td>10～30%</td>
<td>H₂SO₄</td>
<td>7664-93-9</td>
</tr>
<tr>
<td></td>
<td>(27～50%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ABS resin</td>
<td>Battery container, lid</td>
<td>4～15%</td>
<td>----</td>
<td>9003-56-9</td>
</tr>
</tbody>
</table>
4. First-aid Measures

If inhaled:
(Lead, lead dioxide, lead sulfate, dilute sulfuric acid)
Remove person to fresh air, keep comfortable for breathing.
Get medical advice/attention.

If on skin:
(Lead, lead dioxide, lead sulfate)
Wash skin with plenty of water and soap.
If skin irritation occurs, get medical advice/attention.
(dilute sulfuric acid)
Take off or remove immediately all contaminated clothing.
Rinse skin with water or shower.
If skin irritation or chemical injury occurs, get medical advice/attention.

If in eyes:
(Lead, lead dioxide, lead sulfate, dilute sulfuric acid)
Open the eyelids with your fingers, rinse thoroughly with water for at least 15 minutes.
Remove contact lenses, if present and easy to do.
Continue rinsing.
Get medical attention/advice.

If swallowed:
(Lead, lead dioxide, lead sulfate)
Rinse mouth.
Get medical advice/attention.
(dilute sulfuric acid)
Rinse mouth.
Give plenty of water.
Do not induce vomiting.
Get medical advice/attention.

Most important symptoms/effects, acute and delayed:
(Lead, lead dioxide, lead sulfate)
Stomach cramps, lethargy, headache, nausea, vomiting, weakness, wheezing, pallor, hemoglobinuria, collapse.
(dilute sulfuric acid)
Corrosive, burning sensation, sore throat, cough, breathlessness, shortness of breath, redness, pain, blisters, severe skin burns, severe burns, abdominal pain, shock or collapse.

Protection for first-aiders:
Rescuers wear protective equipment such as rubber gloves and tight-fitting safety goggles.

Special note to physician:
(Dilute sulfuric acid)
Symptoms of lung edema often do not show until a few hours have passed, and it might aggravate if it does not take a rest. Therefore, it is necessary to take a rest and medical observation.
5. Fire Fighting Measures

Suitable extinguishing media	Extinguish the fire by extinguishers of dry chemical agent, foam fire extinguish agent, and non-flammable gas.
Unsuitable extinguishing media	No information.
Specific risk/hazard	In case of fire, there is a possibility that irritative, corrosive or toxic fumes or gases are generated. There is a possibility of explosion of the product by heat.
Specific fire fighting method	Cut off the power in case of connection/energizing the product into the device, if can be cope with safely. Move the product from the fire area if it is not dangerous. After extinguishing the fire, continue to cool the container thoroughly with plenty of water. Immediately move the movable product to safe place when fire occurs in surrounding. If it is not movable, cool the product with water spray. Keep away the combustible materials to prevent spread fire around.
Protection for fire-fighters	Extinguish fire from upwind. Wear appropriate protective clothes for chemical (self-contained breathing apparatus, protective glasses, etc.) to fire fighting.

6. Accidental Release Measures

Personal precautions, protective equipment and emergency measures	Wear appropriate protective equipment (gloves, protective glasses, protective clothing and the like), when processing the leakage. Do not touch or walk through the leakage. Do not breathe dust, mist and vapour.
Precautions for the environment	Be careful to not discharge the product into the rivers, sewer, and soil.
Method for containment and clean-up	If dilute sulfuric acid is leaked, stopping the flow with sand and earth, absorbing mat and the like, remove by absorbing with them. And then, neutralized with sodium bicarbonate or slaked lime, and wash off with plenty of water. Absorb by sprinkling misty water when the gas is generated. Collected material should be disposed in compliance with '13. Disposal Considerations'.
Prevention of secondary hazards	Immediately remove all ignition sources in the vicinity. Prepare fire extinguishing equipment just in case it is ignited.

7. Handling and Storage

Handling

| Technical measures | Take measure described in ‘8: Exposure Controls and Personal Protective Equipment’, and wear appropriate |
8. Exposure Controls and Personal Protective Equipment

<table>
<thead>
<tr>
<th>Controlled exposure level</th>
<th>: Lead (electrode plate, terminal), lead dioxide(electrode plate), lead sulfate(electrode plate) Lead and its compounds(as lead) TLV = 0.05 mg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissible exposure level</td>
<td>: Dilute sulfuric acid(electrolyte) Sulfuric acid (mist): 0.05mg/m³</td>
</tr>
<tr>
<td>EU IOELV (2009)</td>
<td></td>
</tr>
<tr>
<td>Limit values-Eight hours</td>
<td></td>
</tr>
<tr>
<td>Engineering controls</td>
<td>: Provide hand wash and eyes wash facilities and safety shower near the handling place as necessary.</td>
</tr>
<tr>
<td>Personal protective equipment</td>
<td></td>
</tr>
<tr>
<td>Respiratory protection</td>
<td>: Wear respiratory protective equipment (air respirator, dust mask, gas mask (for acid gases)) as necessary.</td>
</tr>
<tr>
<td>Hand protection</td>
<td>: Wear impermeable protective gloves (acid resistance).</td>
</tr>
<tr>
<td>Eye protection</td>
<td>: Wear protective glasses, goggle type safety glasses and the like.</td>
</tr>
<tr>
<td>Skin and body protection</td>
<td>: Wear protective clothing, protective apron and the like as necessary.</td>
</tr>
<tr>
<td>Hygiene measures</td>
<td>: Do not eat, drink or smoke when handling. Wash hands thoroughly after handling. Protective equipment shall be inspected regularly according to the protective equipment checklist.</td>
</tr>
</tbody>
</table>
9. Physical and Chemical properties

Describes the information about the components below.

<table>
<thead>
<tr>
<th></th>
<th>Lead</th>
<th>Lead dioxide</th>
<th>Lead sulfate</th>
<th>Dilute sulphuric acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearances</td>
<td>Silver white solid</td>
<td>Brown crystal or powder</td>
<td>White crystal</td>
<td>Colorless transparent liquid</td>
</tr>
<tr>
<td>(physical state, form, color, etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odor</td>
<td>No information.</td>
<td>No information.</td>
<td>No information.</td>
<td>Odorless (normal temperature)</td>
</tr>
<tr>
<td>Threshold of odor</td>
<td>No information.</td>
<td>No information.</td>
<td>No information.</td>
<td>No information.</td>
</tr>
<tr>
<td>pH</td>
<td>No information.</td>
<td>No information.</td>
<td>No information.</td>
<td><1.0</td>
</tr>
<tr>
<td>Melting point</td>
<td>327.4°C</td>
<td>888°C</td>
<td>1170°C</td>
<td>No information</td>
</tr>
<tr>
<td>Boiling point, initial boiling point and boiling range</td>
<td>1,749°C</td>
<td>1,480°C</td>
<td>No information</td>
<td>No information</td>
</tr>
<tr>
<td>Flash point</td>
<td>Non flammable</td>
<td>Non flammable</td>
<td>Non flammable</td>
<td>Non flammable</td>
</tr>
<tr>
<td>Flammability(solid, gas)</td>
<td>Non flammable</td>
<td>Non flammable</td>
<td>Non flammable</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Specific gravity(density)</td>
<td>11.35g/cm³ (20°C)</td>
<td>9.53g/cm³</td>
<td>6.2</td>
<td>Approx. 1.2〜1.4</td>
</tr>
<tr>
<td>Partition coefficient (n-octanol/water)</td>
<td>No information.</td>
<td>No information</td>
<td>No information</td>
<td>No information</td>
</tr>
<tr>
<td>Auto-ignition temperature</td>
<td>Non flammable</td>
<td>Non flammable</td>
<td>Non flammable</td>
<td>Non flammable</td>
</tr>
<tr>
<td>Decomposition temperature</td>
<td>No information.</td>
<td>290°C</td>
<td>1000°C</td>
<td>No information</td>
</tr>
<tr>
<td>Viscosity</td>
<td>No information.</td>
<td>No information.</td>
<td>No information.</td>
<td>No information.</td>
</tr>
<tr>
<td>Other Information</td>
<td>No information.</td>
<td>No information.</td>
<td>No information.</td>
<td>No information.</td>
</tr>
</tbody>
</table>

10. Stability and Reactivity

Stability

(lead)

When oxygen is present, it will be eroded by pure water and the weak organic acid. At normal temperature, it will be eroded by fluorine or chlorine.

(lead dioxide/lead sulfate)

It is considered to be stable under normal handling and storage.

(dilute sulfuric acid)

At first, vapor is generated by heating, and generate sulfuric acid vapors if continue to heat.

Rapid contact with water might be generate a large amount
of heat, and sometimes the acid is scattered. Dilute sulfuric acid which is generated by diluting with water, generates hydrogen gas by the corrosion of various metals and may cause flash explosion by mixing with air. There is hygroscopic.

Hazardous reactivity

(lead)
It does not occur hazardous reaction under normal condition.

(lead dioxide)
React violently with combustible materials and organic matter (sulfuric acid, hydrogen peroxide, phosphoric acid), and it may cause risk of fire.

(lead sulfate)
It may react with strong oxidizing agents.

(dilute sulfuric acid)
It may cause fire or explosion by many reactions. It is strong oxidant and reacts with combustible and reducing materials. It is strong acid and reacts violently with bases and is corrosive to most common metals forming a flammable/explosive gas (hydrogen). React with water and organic materials violently and release heat.

Conditions to avoid
Heating, contact with ignition sources (open flame, spark, etc.)

Incompatible materials
(lead): Oxidizing agent.
(lead dioxide): Flammable materials, reducing materials.
(lead sulfate): Strong oxidizing agents.
(dilute sulfuric acid):
Combustible materials, reducing materials, strong oxidizing agents, strong bases.

Hazardous decomposition products
In case of fire, there is a possibility that irritative or toxic gases or fumes are generated.

11. Toxicological Information

Indicate the information for each of components of lead acid battery as below.

☐ Lead (electrode plate, terminal)
Acute toxicity (Oral) : No data.
Acute toxicity (Dermal) : No data.
Acute toxicity (Inhalation: Gases) : Classification not applicable because it is a solid in the definition of GHS.
Acute toxicity (Inhalation: Vapours) : No data.
Acute toxicity (Inhalation: Dust and Mists) : No data.
Skin corrosion/irritation: No data.
Serious eye damage/eye irritation: No data.
Respiratory or skin sensitization: No data.
Germ cell mutagenicity: Although there are contradicting results about the chromosome aberration in the peripheral blood lymphocytes from people who are engaged in lead-related work (IARC suppl. 7 (1987), EHC 3 (1977), DFGOT vol. 17 (2002), ACGIH (7th, 2001)), there are descriptions of lead itself having chromosome aberration/micronucleus inductive actions. Therefore, it was classified as Category 2.

Carcinogenicity: From the below classifications, it was classified as Category 2.
- IARC Supplement 7 (1987) and Japan Society for Occupational Health: 2B
- ACGIH (7th, 2001): A3
- EPA (IRIS (1993)): B2

Reproductive toxicity: Since there is the description that there is the affect for sperm formation disorder in human exposure example (EHC 3 (1977), ACGIH (7th, 2001), DFGOT vol. 17 (2002)), and ovulation dysfunction was observed in the female occupation exposure example (EHC 3 (1977)), it was classified as "Category 1A". There are the descriptions about the relationship with neonatal developmental disorder of cognitive function (ACGIH (7th, 2001), DFGOT vol. 17 (2002), PATTY (4th, 1994) and IARC 23 (1980)), and the descriptions about the relationship with the increase of miscarriage (DFGOT vol. 17 (2002), and PATTY (4th, 1994)). However, the distinct conclusion has not obtained.

Specific target organ toxicity (single exposure): Although there was a case report that renal dysfunction was observed in the acute toxicity in human (DFGOT, vol. 17 (2002)), there was the description that no kidney damage in the subsequent epidemiologic study in the same source of reference. Therefore, the data is insufficient for considering the kidney as target organ, therefore, it is classified as "classification not possible".

Specific target organ toxicity (repeated exposure): Due to the descriptions that the target organs were hematopoietic system, nervous system, kidney, and cardiovascular system in DFGOT vol. 17 (2002), that heme synthesis inhibitors, nephropathy and brain diseases were observed in the human exposure examples in EHC 3 (1977), ACGIH (7th, 2001), PATTY (4th, 1994), and IARC 23 (1980), that it affects to the peripheral nerve and function of central nerve system in humans exposure examples in EHC 3 (1977), ACGIH (7th, 2001), PATTY (4th, 1994), that it affects to cardiovascular system, such as high blood pressure in human exposure examples in EHC 3 (1977), ACGIH (7th,
2001), that the immunosuppressive effect was observed in human exposure examples in PATTY (4th, 1994), it is considered that the target organs were hematopoietic system, the kidney, central nervous systems, peripheral nervous system, cardiovascular system and immune system, and they all were classified as "Category 1". Although there are the descriptions of the case reports of thyroid or adrenal hypofunctions in EHC 3 (1977), each case reports are before 1970, and there is no similar report after that, since there is the description that no effects was observed in the thyroid in DFGOT vol.17 (2002), the thyroid and the adrenal gland were not considered as for target organs.

Aspiration hazard
Others

○ Lead dioxide (electrode plate)
Acute toxicity (Oral) : No data.
Acute toxicity (Dermal) : No data.
Acute toxicity (Inhalation: Gases) : Classification not applicable because it is a solid in the definition of GHS.
Acute toxicity (Inhalation: Vapours) : No data.
Acute toxicity (Inhalation: Dust and Mists) : No data.
Skin corrosion/irritation : Since there is the description of "Probably a severe eye, skin, and mucous membrane irritant" (HSDB (2006)), it is considered that indicate severe irritation to skin. Therefore, it was classified as Category 2.
Serious eye damage/eye irritation : Since there is the description of " Probably a severe eye, skin, and mucous membrane irritant" (HSDB (2006)), it is considered that indicate severe irritation to eyes. Therefore, it is classified as Category 2A.
Respiratory or skin sensitization : No data.
Germ cell mutagenicity : From the description of NTP DB (Access on February 2006);
 • Heritable germ cell mutagenicity tests: None.
 • Germ cell/ somatic cells in vivo mutagenicity tests: None.
 • Germ cell/ somatic cells in vivo genetic toxicity test: None.
 • Positive (strong) results of multiple indicators in in vitro mutagenicity test: None.
It was classified as "Classification not possible".
Carcinogenicity : From the below classifications, it was classified as Category 2.
 • NTP (2005): R
 • IARC (1987): Group 2B
Product name: Lead-acid battery
Company name: Panasonic Storage Battery (Shenyang) Co., Ltd.

- ACGIH (2001): A3
- The Japan Society for Occupational Health: 2B

Reproductive toxicity

Since lead is known as neurotoxic substance and reproductive toxic substance for human, it is classified as "Category 1A" based on experts' judgement.

Specific target organ toxicity
(single exposure, repeated exposure)

For this substance, it is assumed that the classification based on the effects of inorganic lead compounds.

As the toxicity of inorganic lead compounds for humans, there is the description below:

"acute effects and chronic effects of inorganic lead has been recognized almost the same symptoms. By inhalation or ingestion of inorganic lead, it has been reported that cause the convergence of the mouth, thirst. And also nausea, vomiting, upper abdominal discomfort, loss of appetite, abdominal pain, constipation and the like has been reported as effects on the digestive organs.

Effects on hematopoiesis are typical effects of inorganic lead, it has been observed hemoglobin synthesis inhibition and anemia due to shortened of red blood cell life, caused by inhibition of 6-aminolevulinic acid and heme synthesis enzyme. Interstitial nephropathy as the effect to the kidneys, in addition to decreasing amount of urine, proteinuria, hematuria, urine cylinder, the proximal tubule disorder exhibiting a Fanconi syndrome typified by diabetes and amino acid urine is reported. Inorganic lead affects on the peripheral nervous system, in particular, muscle weakness in limbs, pain and convulsions are observed. In addition, although it is very rare case in adults, in case of being exposed to extremely high concentrations (details unknown), the effects on the central nervous system are observed such as ataxia, headache, paresthesia, depression and coma.

However, in effects on the central nervous system, particularly sensitive in children, and the symptoms with no restless, aggressive personality, difficulty concentrating, decline of memory and the like have become a problem in the U.S." (CERI Hazard Assessment Report 2001-9(2002))

Therefore, blood system, kidney and nervous system are considered to be target organs. From the above, it was classified as "Category 1(blood system, kidney, nervous system)".

Aspiration hazard

No data.

Others

No information.

○ Lead sulfate (electrode plates)

Acute toxicity (Oral)

No data.

Acute toxicity (Dermal)

No data.
Acute toxicity (Inhalation: Gases): Classification not applicable because it is a solid in the definition of GHS.

Acute toxicity (Inhalation: Vapours): No data.

Acute toxicity (Inhalation: Dust and Mists): No data.

Skin corrosion/irritation: No data. As effects on humans, although there is no data that can be obtained for local effects on the skin and mucous membranes by lead and inorganic lead compounds, there is the description of that there is likely to cause severe irritation and burns to the skin.

Serious eye damage/eye irritation: No data. As effects on humans, although there is no data indicating the local effects on the mucous membranes by lead and inorganic lead compounds, there is the description of that there is likely to cause severe irritation and burns to the eye.

Respiratory or skin sensitization: No data.

Germ cell mutagenicity: It is “Classification not possible” due to insufficient data of in vivo test. In addition, in the in vitro test, there is the negative report in Ames test. Moreover, although it may not be necessarily matched results have been obtained, there is also the positive result in chromosome analysis using peripheral blood of workers who received the occupational exposure of lead. However, the used method is insufficient in most of the tests, overall it stated that it cannot be conclusive evaluation of genotoxicity in human. Inorganic lead compounds in MAK / BAT (2010) are classified as germ cell mutagenicity 3A.

Carcinogenicity: In carcinogenicity evaluation of IARC, it is classified as Group 2A as inorganic compounds. Therefore, this substance was classified as Category 1B. In addition, it is classified as 2B as a lead compound in The Japan Society for Occupational Health, and A3 as inorganic lead compound in ACGIH.

Reproductive toxicity: Although there is no data of this substance, as effect on humans of inorganic lead compounds, an increase in the spontaneous abortion of pregnancy before 20 weeks was observed by a high concentration exposure of mothers in cases or epidemiological studies. There is description that exposure during the pregnancy is related increased in teratogenicity, low weight newborns and suppression of body weight gain after birth. Although decrease in sperm count and semen volume, morphological changes of sperm, and decreasing of sperm motility were observed by the occupational exposure, in most studies, it is observed dose-response relationship.
between these effects and exposure concentration of lead, and toxicity for sperm has been reported to have been unclear.

: Although there is no data of this substance, neurotoxic effect of lead is known, and receives the influence of the lead in both the peripheral nerves and the central nervous system. Lead encephalopathy is one of the early symptoms of acute exposure. From also that there is a report of the suppression of the pituitary hands and nerve conduction velocity by the occupational exposure, it is classified as "Category 1 (nervous system)". In high concentration acute exposure of lead and inorganic lead compounds, it causes dysfunction of the proximal tubule. There is the description that it causes Fanconi syndrome (diabetes, amino acid urine disease, phosphate urine disease and the like) as renal symptoms of acute lead poisoning. Therefore, it was classified as "Category 1 (kidney)". Moreover, lead is also known to give a change in the blood system. There is the description that the hemoglobin synthesis inhibition and small blood cell anemia and hypochromic anemia due to shortened of red blood cell life are caused by δ-aminolevulinic acid and heme synthesis enzyme are inhibited. Therefore, it is classified as "Category 1 (blood system)". Other, colic is the initial symptoms of occupational exposure or high concentration acute exposure. Since there is the description of the associated symptoms such as constipation, severe abdominal pain, nausea, vomiting, loss of appetite, it is classified as "Category 1 (digestive system)".

: Although there is no data of the substance, there is the description that in high concentration repeated exposure by lead and inorganic lead compounds, it leads to irreversible changes to kidney including tubular atrophy, interstitial fibrosis glomerular sclerosis, and eventually it cause chronic nephritis. Therefore, it was classified as "Category 1 (kidney)". In addition, there is the report of the lead epidemiological study, hemoglobin concentration and hematocrit value of poisoning patients were significantly decreased compared with control subjects of non-exposure. There is the description that the hemoglobin synthesis inhibition and small blood cell anemia and hypochromic anemia due to shortened of red blood cell life are caused by δ-aminolevulinic acid and heme synthesis enzyme are inhibited. Therefore, it was classified as "Category 1 (blood system)".
On the other hand, there is the research study to support the relationship between the chronic lead poisoning and myocardial injury, and there is reported that abnormal electrocardiogram in workers of lead poisoning was observed. In addition, from the data of epidemiological studies, since it has been concluded that internal absorption of lead causes a significant increase in blood pressure in both diastolic and systolic of the heart, it was classified as Category 1 (cardiovascular).

Moreover, suppression of motor nerve conduction velocity was observed in worker who blood concentration of lead is high, and also there is a report of the Parkinson's syndrome has been observed in seven out of nine that have been exposed for more than 30 years in a lead-acid battery. Therefore, it was classified as "Category 1 (nervous system)".

Aspiration hazard
No data.
Others
No information.

- Dilute sulfuric acid (electrolyte)

 Acute toxicity (Oral)
 Based on the Rat LD$_{50}$ value: 2140mg/kg and the description of the death case report by the oral ingestion in humans (amount of intake is unknown), it was classified as Category 5 ("Not classified" by JIS classification).

 Acute toxicity (Dermal)
 No data.

 Acute toxicity (Inhalation: Gases)
 Classification not applicable because it is a liquid in the definition of GHS.

 Acute toxicity (Inhalation: Vapours)
 No data.

 Acute toxicity (Inhalation: Dust and Mists)
 Based on rat LC$_{50}$ value: 0.375mg/L (4 hour exposure) and 347ppm (1-hour exposure) (4 hour equivalent value: 0.347mg/L), it was classified as Category 2.

 Skin corrosion/irritation
 Since pH of concentrated sulfuric acid was 1 or less, it was judged to be corrosive substance in accordance with the GHS classification standards, and classified as Category 1A-1C.

 Serious eye damage/eye irritation
 There is the description that the critical damage to the eye accompanied by lysis of anterior chamber of eye was observed in accident case of human. And also from the description that the moderate irritation with 5% solution and the severe irritation with 10% solution were observed to the eye of rabbit, therefore, it was classified as "Category 1".

 Respiratory or skin sensitization
 Respiratory sensitization: No data.
 Skin sensitization:
 There is no test data on skin sensitizing of sulfuric acids. Although sulfuric acid has been industrially used for several decades, there is no case report of skin sensitization while
skin injuries by skin irritation are well known. Although an extensive amount of sulfate ion exists internally (the sulfate ion in serum ~33 mmol/L, and 50 times more in cells), allergic reactions do not occur. In allergic test of sulfuric acid salt of metal, even if allergic positive with metal may occur, sulfuric ion is presumed to result in allergic negative as is suggested by the negative results in sulfate of zinc. Based on the description that conclusion is obtained from the results mentioned above that sulfate does not cause allergy to human, it is classified as "Not classified".

Germ cell mutagenicity: For in vivo, there is not any test data which the reproductive cells and the somatic cells were used. For in vitro mutagenicity tests, there is the positive result only in the test system with the single indicator (chromosomal aberration test). However, there are negative results in other indices. Therefore, it was classified as "Classification not possible".

Carcinogenicity: Occupational exposure of the mist of the inorganic strong acid including sulfuric acids is classified as group 1 according to IARC, as A2 according to ACGIH, and as K according to NTP. Respect the evaluation of IARC and the latest NTP, it was classified as category 1. However, sulfuric acids itself was classified as the category 4 according to DFGOT. And, since none of those institutions have carried out the carcinogenic classification, it was classified as "Classification not possible".

Reproductive toxicity: In inhalation exposure test using rabbit and mouse in fetal organogenesis period, it is not observed of fetotoxicity and teratogenicity at the dose causing no maternal toxicity in both species. And also, the effect on the reproductive organ of both sexes is not observed in chronic toxicity test and carcinogenicity test. Since the direct effect by irritation/corrosive is the main toxicity, it is judged that there is no concern that indicates the reproductive toxicity, therefore, it was classified as "Not classified".

Specific target organ toxicity (single exposure): There is the descriptions that in the inhalation exposure of low concentration in humans, airway irritation symptoms such as cough and breath shortness are observed and at high concentration exposure, addition to acute effects such as cough, breath shortness and hemoptysis shedding etc., permanent effects such as functional depression of lungs, fibrosis and emphysema are observed. Additionally, there is the description that hemorrhage and dysfunction in lungs were observed in 8-hour inhalation exposure using guinea pigs. Based on these descriptions, it was classified as
12. Ecological Information

Indicate the information for each of components of lead acid battery as below.

○ Lead (electrode plate, terminal)
 Ecotoxicity : No data.
 Persistence/degradability : No data.
 Bioaccumulation : No data.
 Mobility in soil : No data.
 Hazardous to the ozone layer : Not contain ingredients listed in the Annex of the Montreal Protocol.

○ Lead dioxide (electrode plate)
 Ecotoxicity : No data.
 Persistence/degradability : No data.
 Bioaccumulation : No data.
 Mobility in soil : No data.
 Hazardous to the ozone layer : Not contain ingredients listed in the Annex of the Montreal Protocol.

○ Lead sulfate
 Ecotoxicity : Crustacean: Daphnia magna, 48hr-IC_{50} = 0.5mg/L
 (Acute hazardous to the aquatic environment : Category 1)
 Reliable chronic toxicity data has not been obtained. Since it is metal compound, the behavior in water is not known. Because acute toxicity is category 1, chronic hazardous to the aquatic environment was classified as "Category 1".
 Persistence/degradability : No data.
Bioaccumulation: No data.
Mobility in soil: No information.
Hazardous to the ozone layer: Not contain ingredients listed in the Annex of the Montreal Protocol.

Dilute sulfuric acid (electrolyte)
Ecotoxicity: Fishes: Bluegill, 96hr-LC50 = 16-28mg/L
(Acute hazardous to the aquatic environment: Category 3)
Toxicity factor is considered to be aqueous solution which becomes strong acid, but toxic effect is eased by the buffer action in the environmental water. Therefore, Chronic hazardous to the aquatic environment was classified as "Not classified".

Persistence/degradability: No data.
Bioaccumulation: No data.
Mobility in soil: No data.
Hazardous to the ozone layer: Not contain ingredients listed in the Annex of the Montreal Protocol.

13. Precautions for Disposal
Disposal considerations: In the disposal, follow "Waste Management and Public Cleansing Law" and the standards of the local government. Entrust disposal to industrial waste disposal contractor who have obtained a license from local governor, otherwise if the local government is performing waste disposal, entrust them disposal.

14. Transport Information
International regulations(dangerous goods)
Inland transport: Follow the regulation under ADR/RID.
Sea transport: Follow the regulation under IMO.
Air transport: Follow the regulation under ICAO/IATA.

UN number: 2800
UN class: Corrosive substance/Class 8
Proper shipping name: BATTERIES, WET, NON-SPILLABLE, electric storage
Packing group: II
Special requirements: IMO SP238
IATA A48, A67, A164, A183
Marine pollutant: Not applicable
Special safety measures and condition for transport: Avoid mixed load with other substances as much as possible.
Handle the dilute sulfuric acid so as not to leak by overturning or falling.
Load to not overturning, falling and damage, and take
15. Regulatory Information

There are not laws and regulations applicable for the lead-acid battery itself. The product and its ingredients are not regulated by specific provisions related to protection of human health or the environment at EU level, e.g. not considered as SVHCs or POPs.

DIRECTIVE 2002/95/EC, DIRECTIVE 2011/65/EU: Listed (lead)

16. Other Information

Electrochemical reaction formula:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PbO₂</td>
<td>+ 2H₂SO₄</td>
<td>+ Pb</td>
<td>Chg.</td>
<td>——> Dischg.</td>
<td>PbSO₄</td>
</tr>
<tr>
<td>Lead Dioxide</td>
<td>Sulfuric Acid</td>
<td>Lead</td>
<td>Lead sulfate</td>
<td>Water</td>
<td>Lead sulfate</td>
</tr>
</tbody>
</table>

Reference:

Globally Harmonized System of classification and labelling of chemicals, (5th ed., 2013), UN JIS Z 7253:2012
1) NITE GHS classification data.
2) ECHA Home page (http://echa.europa.eu/information-on-chemicals)
3) NITE CHRIP (http://www.safe.nite.go.jp/japan/sougou/view/SystemTop_jp.faces)

Notice:

The contents described in this SDS are prepared based on the data and information currently available to us. However, it does not intend to be any guarantees in regard to content, physical and chemical properties, hazards, etc.

Please handle this product in the responsibility of the user after referring to this SDS.

In addition, the precautions are intended for normal handling. Please use under implementing safety measures that are suitable for application/usage if you want to special handling.