Overview

Panasonic Valve Regulated (Sealed) lead-acid battery (VRLA battery) have been on the market for more than 30 years. The VRLA battery is a rechargeable battery which requires no watering. Adopting lead-tin-calcium alloy as the grid alloy, it has outstanding characteristics against severe use conditions such as overcharge, overdischarge, vibration, shock and also for various storage conditions. Our accumulation of technologies has enabled us to respond to market requirements promptly by developing batteries such as trickle/cycle long life type. The VRLA battery covers a broad range of applications including, electric tools, UPS, and three and four wheel electric wheel chairs for the elderly.

Battery types and model numbers

For main power source — Cycle long life typeLC-XC

For main and standby — Expected trickle life 3-5(* 6) years..LC-R

For standby power source

| Expected trickle life 3-5 (* 6) years...UP-RW | Standard caseLC-X |
| Expected trickle life approx. 6(*10) years | Flame-retardant case ..LC-P |

Expected trickle life: Up to 50% of initial capacity under the following conditions:

- Temperature: 25°C
- Discharge current: 0.25CA
- Discharge ending voltage: 5.25V for 6V battery, 10.5V for 12V battery
- Charge voltage: 6.85V for 6V battery, 13.7V for 12V battery
- Life: conform to Eurobat (20˚C / 0.1C)
Valve Regulated (Sealed) Lead-Acid Batteries

Construction and Electrolyte

- **Positive plates**
 Positive plates are plate electrodes of which a grid frame of lead-tin-calcium alloy holds porous lead dioxide as the active material.

- **Negative plates**
 Negative plates are plate electrodes of which a grid frame of lead-tin-calcium alloy holds spongy lead as the active material.

- **Electrolyte**
 Diluted sulfuric acid is used as the medium for conducting ions in the electrochemical reaction in the battery.

- **Separators**
 Separators, which retain electrolyte and prevent shorting between positive and negative plates, adopt a non-woven fabric of fine glass fibers which is chemically stable in the diluted sulfuric acid electrolyte. Being highly porous, separators retain electrolyte for the reaction of active materials in the plates.

- **Valve (One way valve)**
 The valve is comprised of a one-way valve made of material such as neoprene. When gas is generated in the battery under extreme overcharge condition due to erroneous charging, charger malfunctions or other abnormalities, the vent valve opens to release excessive pressure in the battery and maintain the gas pressure within specific range (7.1 to 43.6 kPa).

- **Positive and negative electrode terminals**
 Positive and negative electrode terminals may be faston tab type, bolt fastening type, threaded post type, or lead wire type, depending on the type of the battery. Sealing of the terminal is achieved by a structure which secures long adhesive-embedded paths and by the adoption of strong epoxy adhesives. For specific dimensions and shapes of terminals, see page 68.

- **Battery case materials**
 Materials of the body and cover of the battery case are ABS resins, unless otherwise specified.

Electrochemical Reactions on Electrodes

The electrochemical reaction processes of the sealed lead-acid battery (negative electrode recombination type) are described below. Where “charge” is the operation of supplying the rechargeable battery with direct current from an external power source to change the active material in the negative plates chemically, and hence to store in the battery electric energy in the form of chemical energy. “Discharge” is the operation of drawing out electric energy from the battery to operate external equipment.

\[
\begin{align*}
\text{(Positive electrode)} & \quad \text{(Negative electrode)} & \quad \text{(Electrolyte)} \\
\text{PbO}_2 & + \text{Pb} & + 2\text{H}_2\text{SO}_4 \\
\text{(Lead dioxide)} & \quad \text{(Lead)} & \quad \text{(Sulfuric acid)} \\
\text{Discharge} & \quad \text{Charge} \\
\text{(Positive electrode)} & \quad \text{(Negative electrode)} & \quad \text{(Electrolyte)} \\
\text{PbSO}_4 & + \text{PbSO}_4 & + 2\text{H}_2\text{O} \\
\text{(Lead sulfate)} & \quad \text{(Lead sulfate)} & \quad \text{(Water)}
\end{align*}
\]
In the final stage of charging, an oxygen-generating reaction occurs at the positive plates. This oxygen transfers inside the battery, then is absorbed into the surface of the negative plates and consumed. These electrochemical reaction processes are expressed as follows.

\[
\begin{align*}
\text{(Positive electrode)} & \quad \text{PbSO}_4 \quad \text{Charge} \quad \text{PbO}_2 \quad \text{Overcharge} \quad \text{O}_2 \\
\text{(Negative electrode)} & \quad \text{PbSO}_4 \quad \text{Charge} \quad \text{Pb(\text{O}_x)} \quad \text{Reaction} \quad \text{Gas recombination reaction cycle}
\end{align*}
\]

Applications

- **Stand-by/Back-up power applications**
 - Communication equipment: base station, PBX, CATV, WLL, ONU, STB, etc.
 - Back-up for power failure: UPS, ECR, computer system back-up, sequencers, etc.
 - Emergency equipment: lights, fire and burglar alarms, radios, fire shutters, stop-position controls (for machines and elevators), etc.

- **Main power applications**
 - Communication and telephone equipment: cellular phones (bag phones), transceivers, etc.
 - Electrically operated vehicles: picking carts, automated transports, electric wheelchairs, cleaning robots, electric automobiles, etc.
 - Tools and engine starters: grass shears, hedge trimmers, cordless drills, screwdrivers, jet-skis, electric saws, etc.
 - Industrial equipment/instruments and non life-critical medical equipment*: measuring equipment, non life-critical medical equipment (electrocardiograph), etc.
 - Photography: camera strobes, VTR/VCR, movie lights, etc.
 - Toys and hobby: radio-controllers, motor drives, lights, etc.
 - Miscellaneous uses: integrated VTR/VCR, tape recorders, other portable equipment, etc.

*(Note) When any medical equipment incorporating a Panasonic VRLA battery is planned, please contact Panasonic.

Features

- **Leak-resistant structure**
 A required-minimum quantity of electrolyte is impregnated into, and retained by, the positive and negative plates and the separators; therefore electrolyte does not flow freely. Also, the terminal has a sealed structure secured by long adhesive-embedded paths and by the adoption of strong epoxy adhesives which makes the battery leak-resistant. (Note) In stand-by/back-up uses, if the battery continues to be used beyond the point where discharge duration has decreased to 50% of the initial (i.e. life judgment criteria), cracking of the battery case may occur, resulting in leakage of the electrolyte.

- **Long service life**
 Service life of our long-life series (LC-P, LC-X series) is approximately double that of the conventional (LC-R) batteries (Temperature 25°C, discharge rate 0.25 CA/1.75V/cell, discharge frequency every 6 months, 2.30V/cell charge).

- **Easy maintenance**
 Unlike the conventional batteries in which electrolyte can flow freely, VRLA batteries do not need the specific-gravity check of the electrolyte nor the watering structurally; this makes the battery function fully and makes maintenance easy.

- **No sulfuric acid mist or gases**
 Unlike the conventional batteries in which electrolyte can flow freely, VRLA batteries generate no sulfuric acid mist or gases under the use condition we recommend. In uses under conditions other than recommended, however, gas generation may occur, therefore do not design the battery housing with a closed structure.

- **Exceptional deep discharge recovery**
 As seen in the figure on the next page, our VRLA battery shows exceptional rechargeability even after deep discharge, which is often caused by failure to turn off the equipment switch, followed by standing (approx. 1 month at room temperature is assumed).
Transportation
Our VRLA batteries should be handled as common cargo for both air shipment (*1) and boat shipment (*2), as they can withstand electrolyte leakage during the vibration test, the differential atmospheric pressure test and the altitude test in accordance with the special requirements of transportation regulations specified by the international organizations (ICAO: International Commercial Aviation Organization and IMO: International Maritime Organization).

(*1: Special provision A67 *2: Special provision 238)

• ISO
The Quality System and the Environmental Management System at our plants were recognized and registered as conforming to ISO.

<table>
<thead>
<tr>
<th>ISO 9001:2000</th>
<th>ISO 9002</th>
<th>ISO 14001</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSB (Japan)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PSBS (China)</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

• JIS (Japan Industrial Standards)
Our small sized VRLA batteries comply with JIS C 8702.

Example of rechargability after deep discharge and standing

<table>
<thead>
<tr>
<th>Charge time (hours)</th>
<th>Current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>1.6</td>
</tr>
<tr>
<td>2</td>
<td>1.2</td>
</tr>
<tr>
<td>4</td>
<td>0.8</td>
</tr>
<tr>
<td>6</td>
<td>0.4</td>
</tr>
</tbody>
</table>

UL recognition
Our VRLA batteries fall into UL1989 (Standby Batteries). UL1989 requires that the battery is free from the hazard of bursting, that is, when the battery is overcharged the vent valve opens to release internal pressure. UL-recognized types of VRLA batteries to date are listed in the following table. A number of the recognized battery types are in use for such applications as emergency lights.

• VdS and other recognition
The types of VRLA batteries which have acquired VdS (Germany) recognition and the Japanese recognition to date are also listed.

Table of battery types which acquired local/overseas recognition

<table>
<thead>
<tr>
<th>Standard/recognition</th>
<th>Contents</th>
<th>Recognition number</th>
<th>Recognized Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL</td>
<td>U.S. Safety standard</td>
<td>UL1989 Standby Batteries</td>
<td>MH13723</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LC-R061R3(a) LC-R063R4(a) LC-R064R2(a) LC-R067R2(a) LC-R0612(a) LC-R121R3(a) LC-R122R2(a) LC-R123R4(a) LC-R127R2(a) LC-R1212(a) LC-R1223(a) LC-R1233(a) LC-R1273(a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LC-P067R2(a) LC-P0612(a) LC-P127R2(a) LC-PD1217(a) LC-X1220(a) LC-X1224(a) LC-X1228(a) LC-X1238(a) LC-X1242(a) LC-X1265(a) LC-X1265(a) LC-X1288(a) LC-X1238(a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UP-RW1220(a) UP-RWA1232(a) UP-RW1245(a)</td>
</tr>
<tr>
<td>VdS German Safety Standard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LC-R121R3PG LC-R127R2PG/LPG LC-X1224APG/AP LC-X1265PG/P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LC-R122R2PG LC-R12212PG/LPG LC-X1273APG/AP LC-X1288PG/P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LC-R123R4PG LC-R123121PG/LPG LC-X1238PG/LPG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LC-R123121P1 LC-X1238PG/P</td>
</tr>
</tbody>
</table>

Additional configuration codes (alphabetic letters or numbers) may appear for (a) in the code numbers of UL recognized types.

(Note) These standards are also valid for old model numbers.
CHARACTERISTICS

- **Charging**
 Charge characteristics (constant voltage-constant current charging) of VRLA batteries are exemplified below.

Example of constant-voltage charge characteristics by current

In order to fully utilize the characteristics of VRLA batteries, constant-voltage charging is recommended. For details of charging see page 19.

- **Discharging**
 a) **Discharge current and discharge cut-off voltage**
 Recommended cut-off voltages for 6V and 12V batteries consistent with discharge rates are given in the figure below. With smaller discharge currents, the active materials in the battery work effectively, therefore discharge cut-off voltages are set to the higher side for controlling overdischarge. For larger discharge currents, on the contrary, cut-off voltages are set to the lower side.
 (Note) Discharge cut-off voltages given are recommended values.

b) **Discharge temperature**
 (1) Control the ambient temperature during discharge within the range from -15°C to 50°C for the reason described below.
 (2) Batteries operate on electrochemical reaction which converts chemical energy to electric energy. The electrochemical reaction is reduced as the temperature lowers, thus, available discharge capacity is greatly reduced at temperatures as low as -15°C. For the high temperature side, on the other hand, the discharge temperature should not exceed 50°C in order to prevent deformation of resin materials which house the battery or deterioration of service life.

c) **Effect of temperature on discharge characteristics**
 Available discharge capacity of the battery varies with ambient temperature and discharge current as shown in the figure below.

Discharge capacity by temperature and by discharge current
CHARACTERISTICS - CONTINUED

d) Discharge current
Discharge capability of batteries is expressed by the 20 hour rate (rated capacity). Select the battery for specific equipment so that the discharge current during use of the equipment falls within the range between 1/20 of the 20 hour rate value and 3 times that (1/20 CA to 3 CA): discharging beyond this range may result in a marked decrease of discharge capacity or reduction in the number of times of repeatable discharge. When discharging the battery beyond said range, please consult Panasonic in advance.

e) Depth of discharge
Depth of discharge is the state of discharge of batteries expressed by the ratio of amount of capacity discharged to the rated capacity.

Storage
a) Storage condition
Observe the following condition when the battery needs to be stored.
(1) Ambient temperature: -15°C to 40°C (preferably below 30°C)
(2) Relative humidity: 25% to 85%
(3) Storage place free from vibration, dust, direct sunlight, and moisture.

b) Self discharge and refresh charge
During storage, batteries gradually lose their capacity due to self discharge, therefore the capacity after storage is lower than the initial capacity. For the recovery of capacity, repeat charge/discharge several times for the battery in cycle use; for the battery in trickle use, continue charging the battery as loaded in the equipment for 48 to 72 hours.

c) Refresh charge (Auxiliary charge)
When it is unavoidable to store the battery for 3 months or longer, periodically recharge the battery at the intervals recommended in the table below depending on ambient temperature. Avoid storing the battery for more than 12 months.

<table>
<thead>
<tr>
<th>Storage temperature</th>
<th>Interval of auxiliary charge (refresh charge)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 20°C</td>
<td>9 months</td>
</tr>
<tr>
<td>20°C to 30°C</td>
<td>6 months</td>
</tr>
<tr>
<td>30°C to 40°C</td>
<td>3 months</td>
</tr>
</tbody>
</table>

d) Residual capacity after storage
The result of testing the residual capacity of the battery which, after fully charged, has been left standing in the open-circuit state for a specific period at a specific ambient temperature is shown in the figure below. The self discharge rate is very much dependent on the ambient temperature of storage. The higher the ambient temperature, the less the residual capacity after storage for a specific period. Self discharge rate almost doubles by each 10°C rise of storage temperature.

Residual capacity test result
e) Open circuit voltage vs. residual capacity
Residual capacity of the battery can be roughly estimated by measuring the open circuit voltage as shown in the Figure.

Open circuit voltage vs. Residual capacity 25°C

- Temperature conditions
Recommended temperature ranges for charging, discharging and storing the battery are tabulated below.

<table>
<thead>
<tr>
<th></th>
<th>Charge</th>
<th>Discharge</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0°C ~ 40°C</td>
<td>-15°C ~ 50°C</td>
<td>-15°C ~ 40°C</td>
</tr>
</tbody>
</table>

- Battery life
a) Cycle life
The cycle life (number of cycles) of the battery is affected by such factors as battery types, charging methods, ambient temperature, interval between charge and discharge, or depth of discharge. Typical cycle life characteristics of the battery are shown in the above figure. This is typical data obtained from a well-equipped laboratory.

Cycle times depend on each model of batteries and may differ from this data when batteries are actually used in the field.

Expected life is also affected by charge conditions. For life performance, please check actual charge/discharge pattern in the field. The life is shortened at shallow discharge about less than 30% of rated capacity. For additional inquiries, please contact Panasonic office.
b) Trickle (Float) life

Trickle life of the battery is largely dependent on the temperature condition of the equipment in which the battery is used, and also related to the type of the battery, charge voltage and discharge current. The respective Figures show the influence of temperature on trickle life of the battery, an example of trickle (float) life characteristics of the battery, and the test result of the battery life in an emergency lamp.

Influence of Temperature on Trickle life

![Graph showing influence of temperature on trickle life](image)

Trickle life characteristics at 50°C

![Graph showing trickle life at 50°C](image)