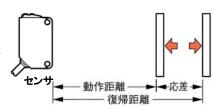
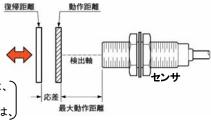


センサの用語解説

【応差(ヒステリシス)】

■ 応差(ヒステリシス)とは?


- ・反射型光電センサにおいて、センサに対し、標準検出物体を検出軸方向から 近づけ、初めて入光動作する距離(動作距離)と、遠ざけて初めて出力が非入光 動作する距離(復帰距離)との距離差のことを応差(ヒステリシス)と言います。 動作距離に対する割合(%)で表します。
- ・動作距離に対する割合であり、検出距離に対する値ではありません。 したがって、感度調整により動作距離が短くなると、応差(ヒステリシス)の数値は 小さくなります。


入光動作:動作設定により異なり、Light-ONにした場合はON、Dark-ONにした場合は、OFFとなる。 非入光動作:動作設定により異なり、Light-ONにした場合はOFF、Dark-ONにした場合は、ONとなる。

・近接センサにおいて、標準検出物体を検出軸方向から近づけ、初めて接近時動作する距離(動作距離)と、遠ざけて初めて出力が離れた時の動作をする距離 (復帰距離)との距離差のことを応差(ヒステリシス)と言います。 動作距離に対する割合(%)で表します。

接近時動作:出力動作により異なり、接近時ONの機種の場合はON、離れてONの機種の場合は、 OFFとなる。

離れた時の動作:出力動作により異なり、接近時ONの機種の場合はOFF、離れてONの機種の場合は、ONとなる。

■ 応差(ヒステリシス)の事例

・小型ビームセンサ**CX-400**シリーズ(拡散反射型)の応差(ヒステリシス)の仕様は、次のように『動作距離の15%以下』 となっており、この数値(15%)は固定です。

		種 類	類		透 過 型 長距離		ミラー反射型						拡散反射型				
		作里	知				偏光フィルタ付	長距離	透明体検出用			加权又利益			至	狭視	界
										CX-483			424	CX-421	CX-422	CX-4	423
項	目名	PNP	出力	CX-411-P	CX-412-P	CX-413-P	CX-491-P	CX-493-P	CX-481-P	CX-483-P	CX-482-P	C)	4-P	CX-421-P	CX-422-P	CX-42	23-P
検	出	距	離	10m	15m					50~1,000mm(注2)			(注3)	300mm(注3)	800mm(注3)	70~300m	rm(注3)
応	差(1	ヒステリ	シス)									動作距離の15%以下(注3)					

(注3): 拡散反射型の検出距離および応差は、白色無光沢紙(200×200mm)に対する値です。

・反射型ビームセンサの場合、ほとんどの機種が15%以下となっていますが、機種に異なり、15%以外の数値の機種もあります。

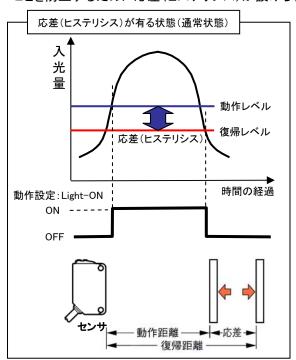
例えば、距離設定反射型ビームセンサCX-441/CX-443の応差(ヒステリシス) の仕様は、『設定距離の2%以下』となっています。

これは、微小な段差を検出するために、このような仕様となっているものです。

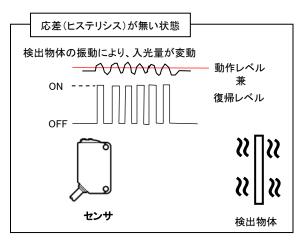
応差2%以下、わずか0.4mmの段差検出が可能 CX-441/443

先進の光学系により、従来品比約2.5倍の検出能力を発揮。0.4mmの微小な段差でも検出できます。

設定距離20mmで 薄さ0.4mmの段差 検出が可能


■ 透過型、ミラー反射型ビームセンサには、応差 (ヒステリシス)が無いのか?

		種	類		透 過 型 長距離		ミラー反射型					tr			
		作里	郑				偏光フィルタ	村 長距離	透	透明体検出用			拡散反射型		
\	型型	NPN	出力	CX-411	CX-412	CX-413	CX-49	1 CX-493	CX-481	CX-483	CX-482	CX-424	CX-421	CX-422	CX-423
項	目名	PNP	出力	CX-411-P	CX-412-P	CX-413-P	(<u>-4</u> 91	-P CX-493-F	CX-481-P	CX-483-P	CX-482-P	CX-424-P	CX-421-P	CX-422-P	CX-423-P
検	出	距	離	10m	15m	30m	om(注ž	2) 5m(注2)	50~500mm(注2)	50~1,000mm(注2)	0.1~2m(注2)	100mm(注3)	300mm(注3)	800mm(注3)	70~300mm(注3)
応	応 差(ヒステリシス)												動作距離の15%以下(注3)		


・透過型、ミラー反射型ビームセンサの応差(ヒステリシス)は、上記のように『―』となっており、数値の規定がありません。これは、応差(ヒステリシス)が、"無い"ということではなく、反射型のような規定が困難なために記載なし(―)、としているだけであり、実際には応差(ヒステリシス)は存在します。

■ どうして、応差(ヒステリシス)が必要なのか?

・検出物体の振動や内部ノイズ(受光素子のホワイトノイズ)の影響を受けて、センサの出力が不安定になる(チャタリング) ことを防止するために応差(ヒステリシス)が設けられています。

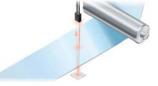
- ・左のグラフは、検出物体を遠方からセンサに近づけ、その後に 検出物体を遠ざけたときの"入光量"を表したものです。 反射型ビームセンサの場合、検出物体を近づけると入光量は多く なり、遠ざけると少なくなります。
- ・動作レベルとは、検出物体が動作距離ちょうどの位置にある時の 入光量で、この値を超えると出力は入光動作します。
- ・復帰レベルとは、検出物体が復帰距離ちょうどの位置にある時の 入光量で、この値を下回ると出力は非入光動作します。
- ・動作レベルと復帰レベルの差が応差(ヒステリシス)です。

・今、仮に、応差(ヒステリシス)が無い場合、すなわち、動作レベルと復帰レベルが同一である場合を考えてみます。

検出物体が動作・復帰距離付近に静止していて、多少、振動している場合、本来、出力はONまたは、OFFで一定であるべきですが、検出物体の振動により入光量が変動し、その度毎に動作・復帰レベルを超えたり下回ったりすることになります。この結果、出力はON/OFFを繰り返すことになります。(これを、チャタリングと呼んでいます。)

■ 応差(ヒステリシス)を小さくすると、キレの良い検出ができる

- ・一般的にセンサの応差(ヒステリシス)は一定ですが、デジタルファイバセンサ **FX-500**シリーズでは、応差(ヒステリシス)を3段階で切り換えることが可能です。
 - ・応差(ヒステリシス)を小さくすると、微小な部品の検出など、シャープな切れ味 良い検出が可能となります。
 - ・応差(ヒステリシス)を大きくすると、検出物体のバタつきに強い検出が可能 となります。


モード	ヒステリシス の大きさ	光量	内容
H-01	極小	小さい	キレ味鋭いシャープな検出が可能 なモードです。光量が飽和しそうな 微小部品検出などに最適です。
H-02	小	大きい	初期設定のモードです。大型 ガラス基板など超長距離でも キレの良い検出が可能です。
H-03	大	大きい	チャタリング対策のモードです。 振動や汚れなど悪環境に対応 します。

XY5X-03**■**

光量変化の幅が ヒステリシス内 に入る。

フィルムのバタツキにより、光量が変化

●技術に関するお問い合わせは コールセンタ 図 0120-394-205 ※サービス時間/9:00~17:00(12:00~13:00、当社休業日を除く) ●FAX 図 0120-336-394

■発行 パナソニック デバイス SUNX株式会社 マーケティング統括部